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RESUME EN FRANCAIS

FRENCH ABSTRACT

Introduction

Contexte

En 2015, Lewis Wolpert, Cheryll Tickle et Alfonso Martinez Arias ont déclaré :
“Comprendre comment les embryons se développent est un énorme défi intellectuel, et
l'un des objectifs ultimes de la science de la biologie du développement est de comprendre
comment nous, les humains, nous nous développons.” ! [1]. Plusieurs facteurs expliquent
la nécessité de mieux comprendre le développement embryonnaire. Certains mécanismes
de régulation restent encore a comprendre et ’émergence de stades de développement
spécifiques doit faire I'objet d’analyses plus détaillées. En outre, une compréhension plus
approfondie permettra d’améliorer les techniques de procréation assistée, telles que la
fécondation in vitro (FIV), en optimisant les conditions de culture des embryons. Lorsque
les parents rencontrent des difficultés pour concevoir un enfant, ils peuvent faire appel
a la FIV, qui consiste a cultiver des embryons in vitro (dans des boites en plastique en
laboratoire) pendant 5 & 6 jours avant de transférer I’embryon dans 1'utérus de la femme.
Ce processus nécessite un milieu de culture spécifique et diverses méthodes d’évaluation
sont utilisées pour sélectionner les embryons a implanter. Bien qu’elle soit pratiquée depuis
plusieurs décennies, le taux de réussite est relativement faible, de I'ordre de 20 a 30% [2].
Il est donc crucial d’améliorer notre compréhension du développement embryonnaire

humain.

L’étude de ’embryon humain est complexe, en raison de différents facteurs.
Tout d’abord, le cadre juridique est tres strict, et la culture d’embryons doit respecter
de nombreuses réglementations. En France, les activités de recherche sur les embryons

sont encadrées et controlées par 1’Agence de la biomédecine. La recherche doit utiliser

1. Traduction de “Understanding how embryos develop is a huge intellectual challenge, and one of the
ultimate aims of the science of developmental biology is to understand how we humans develop.” [1]
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des embryons issus de FIV et donnés a la recherche, avec des restrictions telles que
I'interdiction de cultiver les embryons pendant plus de 14 jours apres la fécondation ou

d’introduire des cellules d'une autre espece dans un embryon humain.

Deuxiemement, la culture d’embryons humains in vitro requiert des compétences
techniques hautement spécialisées, notamment en ce qui concerne l'élaboration de
protocoles de culture et la manipulation des embryons. De plus, la composition des milieux

de culture joue un réle important dans le développement de ’embryon.

Troisiemement, les embryons humains sont biologiquement complexes. Les mécanismes
de régulation qui interviennent au cours du développement sont spécifiques et suivent une
orchestration qui n’est pas encore totalement comprise. Le nombre limité d’embryons et

la variabilité des échantillons compliquent également les analyses.

Ces défis soulignent la nécessité de trouver des solutions alternatives pour étudier le
développement de ’embryon humain. Ces solutions ne visent pas a remplacer les analyses
biologiques des embryons humains, mais a fournir des informations complémentaires. Les
deux approches essentielles pour I’étude du développement embryonnaire humain sont :

(i) les modeles cellulaires et (7i) les modeles informatiques.

Pour modéliser biologiquement les embryons humains, les cellules souches peuvent
étre utilisées pour représenter des stades de développement ou des destins cellulaires
spécifiques [15, 16]. Ces cellules ont la capacité de se différencier en plusieurs types
cellulaires et peuvent étre génétiquement modifiées pour imiter des stades ou des lignées
embryonnaires spécifiques. En 2022, une lignée cellulaire spécifique issue de cellules
souches a été utilisée pour former des blastoides. Un blastoide est une structure cellulaire
composée de trois lignées cellulaires (trophectoderme, épiblaste et endoderme, voir la
section suivante pour plus de détails) formant un blastocyste, un stade de développement
de 'embryon. Le blastoide est morphologiquement similaire a un embryon et est capable
de s'implanter dans I'utérus [3]. Ces blastoides, qui peuvent étre générés en grand nombre,
constituent une ressource prometteuse pour pallier le manque d’embryons disponibles et

tester des hypotheses avec moins de contraintes juridiques.

Une autre approche pour modéliser le développement embryonnaire humain est
la bioinformatique, qui utilise la biologie des systéemes pour déduire des modeles
informatiques. Ces modeles permettent aux chercheurs et chercheuses de changer leur
point de vue sur le systeme modélisé, ce qui peut leur permettre de découvrir de

nouvelles connaissances sur le développement embryonnaire humain. En outre, les modeles



informatiques offrent des capacités inestimables pour prédire 'impact des perturbations
sur ces systemes. L’utilisation d’approches informatiques permet également de surmonter
les limites biologiques et est tres utile pour effectuer des simulations basées sur des

hypotheses.

Cette these s’inscrit dans un projet de recherche qui vise a déduire des modeles
informatiques du développement embryonnaire humain. Nous nous concentrons sur le
développement préimplantatoire pour deux raisons. Premierement, il s’agit de la partie
la mieux comprise du développement embryonnaire précoce, ce qui la rend appropriée
pour valider les résultats de notre modélisation. Deuxiemement, c’est la partie qui est
reproduite in vitro lors de la FIV. Par conséquent, la modélisation de cette étape sera

bénéfique pour les améliorations futures de la FIV.

Dans les sections suivantes, nous présentons d’abord le développement

préimplantatoire de ’embryon humain, puis nous exposons 'objectif de cette these.

Développement préimplantatoire de I’embryon humain

Le développement embryonnaire humain commence par la fécondation d'un ovocyte
par un spermatozoide (Figure 1A). Le zyogte fécondé se divise ensuite toutes les 24 heures
environ, formant la morula au quatriéme jour. A ce stade, les cellules commencent &
se différencier en divers types. Le développement préimplantatoire se poursuit jusqu’a
I'implantation de I’embryon dans l'utérus de la femme. Au cours de ce développement,
plusieurs événements clés se produisent.

Le premier événement majeur est l'activation du génome zygotique (ZGA) qui se
produit au stade 8 cellules (8 cells). Il est suivi par la premiere spécification cellulaire, ou
la masse cellulaire interne (ICM) se sépare du trophectoderme (TE), marquant la décision
initiale du destin des cellules. Une deuxiéme spécification au sein de 'lCM conduit a la
formation de I’épiblaste (EPI) et de I'endoderme primitif (PrE), créant ainsi deux destins
cellulaires distincts. Finalement, ces trois destins cellulaires, TE, EPI et PrE, sont présents
lors de la phase d’implantation.

Chacun de ces destins cellulaires a un role spécifique dans le développement. Le TE
formera le placenta, le PrE deviendra le sac vitellin du feetus et I’'EPI est destinée a étre
le futur feetus. Les étapes du développement embryonnaire préimplantatoire peuvent étre

résumées dans le schéma présenté dans la Figure 1B.

xi



A Segmentation

Day 1 Day 2 Day 3
2 cells 4 cells 8 cells

— Blastocyst B1
-0
\ D

Morula Iasto. B2 ay 5

6 =

(5)< e

’ | ‘
Day 6

[Compacton |
\)

Day 7
Post-implantation
‘ embryo

Primitive
Pre Endoderme

Day 0

Implantation

B 2" specification

Inner Cell Mass
EPI| Epiblast

| 1% specification TE Trophectoderm

| | |
earlyTE  mediumTE  late TE

Figure 1 — Le développement embryonnaire préimplantatoire humain.
(A) Les différentes étapes du développement préimplantatoire. L’ovocyte est fécondé par un
spermatozoide, formant un zygote. Le zygote se divise environ toutes les 24 heures, se transformant
en morula. Les cellules commencent & se différencier en suivant deux spécifications successives, ce qui
donne lieu a trois destins cellulaires. L’embryon s’implante dans 'utérus de la femme. Notons que les
couleurs des cellules correspondent aux destins cellulaires représentés en (B).
(B) Représentation schématique. Au cours du développement préimplantatoire de ’embryon humain, deux
spécifications se produisent, conduisant & trois destins cellulaires : 'endoderme primitif (PrE), I’épiblaste
(EPI) et le trophectoderme (TE). Dans la maturation du TE, trois phases sont observées : TE précoce,
TE moyen et TE tardif.
Traduction: day, jour; fertilization, fécondation; oocyte, ovocyte; cell, cellule; blastocyst, blastocyste;
hatching, éclosion, Post-implantation embryo, embryon post-implanté; specification, spécification; early,
précosse, medium, moyen; late, tardif; inner cell mass, masse cellulaire interne; primitive endoderm,
endoderme primitif; epiblast, épiblate; trophectoderm, trophectoderme.
Figure adaptée de Meistermann [/].

xii



Objectif

Cette these s’inscrit dans un projet de recherche visant a définir les processus
dynamiques impliqués dans la différenciation cellulaire, conduisant aux trois destins
cellulaires : épiblaste, endoderme primitif et trophectoderme. En analysant les
mécanismes de régulation impliqués dans le développement embryonnaire, une meilleure
compréhension du développement pourrait permettre d’optimiser les conditions de culture
embryonnaire et pouvoir ainsi augmenter les taux de réussite de la FIV.

Dans ce contexte, l'objectif de cette these est de comprendre les mécanismes
de régulation des genes impliqués dans le développement embryonnaire humain. En
considérant plusieurs stades de développement, la question centrale est de savoir comment
I’embryon passe d’un stade a l'autre et quels sont les mécanismes qui influencent ces
décisions. Bien que l'on sache que certains génes sont importants a certains stades du
développement, les mécanismes de régulation entre ces génes (et les autres) ne sont pas
toujours clairs. Les mécanismes de régulation entre ces genes (et d’autres potentiellement
inconnus) restent donc a découvrir.

Cet objectif présente plusieurs défis. Le premier défi est lié aux données. Nous utilisons
des données transcriptomiques de cellules uniques comprenant un grand nombre de cellules
et de geénes a considérer (environ 1 500 cellules et plus de 20 000 genes ; cf. Section 4.2.3.1).
Ces données sont bruitées et contiennent une forte concentration de valeurs nulles, ce qui
rend I'analyse complexe (cf. Section 2.2.3). Le deuxiéme défi concerne le systeme étudié,
qui ne peut étre perturbé. Cela complique la tache de modélisation et de validation des
résultats obtenus.

Dans cette these, nous nous concentrerons principalement sur la maturation du
destin du trophectoderme (TE). Le TE passe par trois phases de maturation : précoce,
moyenne et tardive (Figure 1B). En outre, le TE, en particulier dans sa phase
tardive, est responsable de I'attachement de ’embryon a 'utérus, un réle crucial pour
le développement futur du feetus. Par conséquent, une meilleure compréhension de
cette maturation et le développement de modeéles informatiques du TE fourniront des

informations précieuses pour le domaine.

Vue d’ensemble de notre approche de modélisation

Dans cette section, nous présentons la vue d’ensemble de notre approche de

modélisation. Nous considérons deux stades de développement, par exemple le stade TE
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moyen et le stade TE tardif. Nous posons le postulat quune cellule TE moyen peut
rester a ce stade ou se différencier en stade TE tardif (Figure 1.2A). La cellule TE
moyen peut étre considérée comme un état initial, tandis que la cellule TE tardif peut
étre considérée comme un état final. Considérons ce probléme comme un probleme de
perturbation. Nous disposons d'un ensemble de perturbations effectuées sur le systeme et
des observations capturées aux états initial et final. Etant donné toutes les transitions
possibles, 'objectif est de trouver des chemins expliquant comment le systeme peut
passer des perturbations aux observations. Les chemins, spécifique aux états, serviront
a modéliser les états étudiés. Par conséquent, les deux modeles expliquent comment le
systeme peut passer des perturbations aux observations.

Si I'on considere les données transcriptomiques unicellulaires, chaque cellule a une
expression spécifique pour chaque geéne (Figure 2B). L’idée est d’identifier les similitudes
et les différences, en termes d’expression génique, entre les deux états (ou cellules). Les
similitudes peuvent étre considérées comme des pseudo-perturbations et les différences
comme des pseudo-observations (Figure 2C). Ici, nous prenons l’exemple d'une cellule;
cependant, plusieurs cellules forment des étapes, ce qui donne un ensemble de paires
pseudo-perturbations et pseudo-observations qui doivent étre prises en compte. Enfin,
compte tenu de toutes les interactions géniques possibles combinées aux pseudo-
perturbations et aux pseudo-observations, des chemins pseudo-perturbations—pseudo-

observations sont appris, modélisant chaque état (Figure 2D).

Contributions

Au cours de cette these, une partie des travaux que j’ai menés a été publiée. Durant
ces trois dernieres années, j’ai eu 'occasion d’étre le premier auteur de deux publications
et de contribuer en tant que co-auteur a une troisieme publication. De plus, une quatrieme
publication, dont je serai le premier auteur, est en cours de rédaction et sera soumise a

un journal.

La premiere publication, Bolteau et al. [5], présentée dans le Chapitre 4, introduit
la méthode que nous avons développée pour inférer des réseaux Booléens a partir de
connaissances préalables et de données transcriptomiques de cellules uniques (scRNAseq).
Ce travail a été publié dans les actes de conférence du 19e International Symposium on
Bioinformatics Research and Applications (ISBRA 2023). J'ai également présenté nos

travaux lors de la conférence qui s’est tenue a Wroctaw, en Pologne. Notre objectif
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Figure 2 — Vue d’ensemble de notre approche de modélisation.
(légende sur la page suivante.)
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dans cette contribution est d’explorer le développement embryonnaire humain, en nous
concentrant spécifiquement sur la compréhension de la maturation du trophectoderme
(TE). Nous utilisons des données scRNAseq pour développer un framework permettant
d’inférer des modeles informatiques qui distinguent deux stades de développement
impliqués dans le développement de I'’embryon. Notre méthode sélectionne des pseudo-
perturbations a partir des données scRNAseq car les perturbations réelles ne sont
pas réalisables en raison de contraintes éthiques et légales. En combinant ces pseudo-
perturbations avec des réseaux de régulation, nous pouvons déduire des réseaux
Booléens qui s’alignent avec précision sur les données scRNAseq pour chaque stade de
développement étudié. Notre méthode, accessible publiquement, a été testée a l'aide
de plusieurs benchmarks, ce qui prouve la faisabilité de notre approche. Appliquée
a l’ensemble des données réelles, nous déduisons des familles de réseaux Booléens
correspondant aux stades de développement moyen et tardif du TE. Leurs structures
révelent des voies de régulation contrastées, offrant des perspectives et des hypotheses

biologiques précieuses dans ce domaine.

La seconde publication, Bolteau et al. [6], présentée dans le Chapitre 4, a été publiée
dans le Journal of Computational Biology en 2024. Cette contribution propose une
exploration plus approfondie des résultats du premier article. Ici, nous utilisons des
données scRNAseq pour modéliser les mécanismes de régulation des génes impliqués dans

deux stades de développement humain : le trophectoderme (TE) moyen et le TE tardif.

(suite de la page précédente.)

(A) Une cellule au stade TE moyen peut soit rester au stade TE moyen, soit se différencier au stade TE
tardif.

(B) Chaque cellule présente un profil d’expression spécifique pour chaque geéne. Certains génes sont
exprimés de maniére similaire dans les deux cellules (e.g., g4, 9B, 9c, 9D, 9E, 9r), tandis que d’autres
présentent une expression différentielle.

(C) Les pseudo-perturbations sont identifiées (g4, 9B, 9c, 9, 9E, gr). Certains autres génes forment
les pseudo-observations (g9q, 91, 91, 97, 9x ). Nous prenons ici ’exemple d’une cellule ; cependant,
plusieurs cellules forment des stades, ce qui donne un ensemble de paires pseudo-perturbations et pseudo-
observations qui doivent étre prises en compte.

(D) Etant donné toutes les interactions géniques possibles dérivées de la connaissance préalable, combinées
aux pseudo-perturbations et aux pseudo-observations extraites pour toutes les cellules individuelles a
chaque stade, des modeles spécifiques au stade sont appris. Les interactions d’activation sont représentées
par des fleches vertes classiques (—), tandis que les interactions d’inhibition sont représentées par des
“fleches en T” rouges (—).

Traduction: medium, moyen; late, tardif; possible gene interactions, interactions de genes possibles; model,
modele.

Figure créée avec BioRender.com.
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Nous identifions 20 pseudo-perturbations, qui sont intégrées aux interactions géniques
déja connues pour déduire des réseaux Booléens spécifiques a chaque stade. Ces réseaux
Booléens délimitent des mécanismes de régulation distincts, ce qui permet de différencier
ces stades de développement. Nous montrons que notre programme est plus performant
que les outils d’identification des pseudo-perturbations existants. Notre méthode contribue
a la compréhension des processus de développement humain et peut s’appliquer a divers

stades de développement et a d’autres domaines de recherche.

La troisiéme publication, Le Bars et al. [7], a été publiée dans le journal BMC
Bioinformatics en 2023. Dans cette publication, ou je suis co-auteur, nous présentons
MajS, une méthode visant a améliorer la modélisation des réseaux de régulation pour
faciliter leur intégration avec les réseaux métaboliques. Etant donné un réseau de
régulation et un ensemble partiel discret d’observations en entrée, MajS teste la cohérence
entre les données d’entrée, propose des réparations minimales sur le réseau pour établir la
cohérence, et enfin calcule des prédictions pondérées et signées sur les espéces du réseau.
Nous avons testé MajS en comparant la voie de signalisation HIF-1 avec deux ensembles
de données d’expression génique. Nos résultats montrent que MajS peut prédire 100%
des especes non observées. En comparant MajS avec deux outils similaires (discret et
quantitatif), nous avons observé que par rapport a l'outil discret, MajS propose une
meilleure couverture des especes non observées, est plus sensible aux perturbations du
systeme, et propose des prédictions plus proches des données réelles. Par rapport a 1’outil
quantitatif, MajS fournit des prédictions discretes plus raffinées qui sont en accord avec
la dynamique proposée par 'outil quantitatif. MajS est une nouvelle méthode permettant
de tester la cohérence entre un réseau de régulation et un ensemble de données qui fournit
des prédictions informatiques sur des especes de réseau non observées. Elle fournit des
prédictions discretes a grain fin en donnant le poids du signe prédit en tant qu’élément
d’information supplémentaire. Les résultats de MajS, grace a leur poids, peuvent étre

facilement intégrés a la modélisation des réseaux métaboliques.

Enfin, une quatrieme publication est en cours de rédaction et sera soumise a un journal
de bioinformatique prochainement. Cet article présentera les résultats préts a étre publiés
du Chapitre 5, mettant en évidence des réseaux Booléens plus robustes et plus pertinents
modélisant le stade moyen et tardif du TE. Ce papier mettra en évidence notre méthode,
SCIBORG, comprenant les améliorations par rapport a la méthode utilisée dans les deux

premiers articles publiés.
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Plan du manuscrit

Ce manuscrit est organisé autour de cing chapitres.

Le Chapitre 2 traite du paysage actuel de la modélisation des données de cellules
uniques. I1 comprend une vue d’ensemble du séquencgage transcriptomique de cellules
uniques et une analyse de trois outils de modélisation.

Le Chapitre 3 présente les définitions nécessaires et donne un apergu des données
utilisées. Il passe également en revue le paradigme de programmation et les différentes
méthodes utilisés dans cette these.

Le Chapitre 4 détaille la méthode mise en ceuvre pour modéliser les étapes du
développement a ’aide de I'inférence de réseaux Booléens. Ce chapitre met en évidence
les principaux résultats présentés dans les deux articles publiés, a savoir: Bolteau et al.
[5] et Bolteau et al. [6].

Le Chapitre 5 met en évidence les améliorations que nous avons apportées a la
méthode précédente, ce qui a permis d’obtenir des résultats plus robustes. Cette deuxiéme
contribution fera I'objet d’un prochain article qui sera soumis a un journal.

Le Chapitre 6 offre une discussion générale du travail présenté dans ce manuscrit et

esquisse les perspectives de cette these.

Discussion et Perspectives

Discussion

Dans ce manuscrit, nous présentons deux contributions réalisées dans le cadre
de cette theése. La premiere introduit une méthode d’inférence de réseaux Booléens
(Boolean networks, BNs) visant & modéliser deux stades du développement embryonnaire
humain. Dans la seconde contribution, nous décrivons les améliorations qui conduisent
a ’énumération exhaustive et aux familles optimales de modeéles, a travers une méthode
nommée SCIBORG. L’assemblage de ces deux contributions a conduit a SCIBORG, un
outil original qui permet de mettre en évidence les principaux mécanismes impliqués
dans le développement embryonnaire humain. SCIBORG se compose de trois étapes :
(1) la reconstruction du réseau de connaissances préalables (PKN), (%) la construction
des plans d’expériences, et (i) l'inférence des BNs. Tout d’abord, la reconstruction du
PKN fait appel a un outil qui interroge la base de données Pathway Commons afin de

reconstruire un graphe d’interactions géniques constituant nos connaissances préalables.
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Deuxiémement, pour construire des plans d’expériences spécifiques a chaque stade, nous
utilisons d’abord un programme Answer Set Programming (ASP) pour identifier les
pseudo-perturbations. Ensuite, nous cherchons a maximiser les différences des readouts
entre les cellules sélectionnées par les pseudo-perturbations. Troisiemement, étant donné
le PKN et les plans expérimentaux, nous utilisons un outil codé en ASP pour déduire des
BNs qui sont a la fois compatibles avec les interactions géniques présentes dans le PKN
et ’expression génique présente dans les plans expérimentaux.

Appliqué aux stades moyen et tardif du TE, SCIBORG nous permet d’identifier
un PKN comprenant 233 genes et complexes protéiques, et 369 interactions géniques.
Notre programme d’identification des pseudo-perturbation permet d’identifier 96 pseudo-
perturbations dans les deux stades étudiés. En explorant les solutions équivalentes aux
pseudo-perturbation, nous avons trouvé deux solutions composées de deux sous-ensembles
de 10 genes permettant l'identification de 96 pseudo-perturbations; c’est-a-dire 96 cellules
dans chaque lignée dont le profil d’expression nous a permis de différencier les stades
TE moyen et tardif. Nous considérons deux méthodologies de normalisation des readouts
et identifions que la normalisation “arctangeante” permet ’apprentissage de résultats
plus robustes et pertinents. Dans la troisieme étape, nous avons appris deux familles de
BNs modélisant le TE moyen et le TE tardif. Nous identifions différents mécanismes
de régulation, spécifiques aux stades étudiés. De plus, nos BNs inférées permettent
I'introduction d’un classificateur cellulaire, visant a classer une cellule dans le stade le
plus proche, en fonction de son expression génique.

Enfin, les résultats de la deuxiéme contribution, présentés dans le Chapitre 5, seront
compilés dans un article scientifique et soumis a un journal de bioinformatique pour

publication.

Pré-traitement des données

Dans I'étape de pré-traitement, les données sont soit binarisées, pour les genes d’entrée
et les genes intermédiaires, soit normalisées pour les genes readouts.

Nous utilisons une méthode de binarisation simple, considérant qu’'un gene est exprimé
si au moins deux reads sont observées dans la cellule. Toutefois, cette approche est
sujette a discussion. Il serait intéressant d’explorer différentes valeurs de seuil pour voir
si elles ont un impact sur les résultats de la binarisation. Par ailleurs, d’autres méthodes
de binarisation existent, comme PROFILE [8] utilisée dans BoNesis, ou RefBool [9].

Ces méthodes peuvent cependant attribuer des niveaux d’expression intermédiaires a
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certains genes, ou écarter certains genes. L’application de ces méthodes en 1’état pourrait
potentiellement entrainer I'exclusion de certains genes ou cellules (lorsqu’un geéne n’est
pas pris en compte), ce qui ne peut pas étre géré pour le moment dans SCIBORG.

En ce qui concerne la normalisation des readouts, la méthodologie utilisée a
un impact significatif sur les BNs déduits (multiplication par deux de la précision
en comparant la normalisation “arctangente” a la normalisation “min-max”). La
normalisation “arctangente” fournit des BNs plus robustes et plus pertinents. Néanmoins,
d’autres méthodes de normalisation pourraient étre explorées afin d’obtenir de meilleurs

résultats.

Reconstruction du PKN

Notre méthode de reconstruction du PKN s’appuie sur pyBRAvo qui interroge Pathway
Commons, une ressource regroupant plusieurs bases de données. Pathway Commons inclut
KEGG [10], la base de données utilisée dans 1'étude de Chebouba et al. [11], ce qui nous
permet, d’incorporer plus de connaissances préalables que celles utilisées dans leur étude.
Nous avons choisi d’utiliser une base de données externe pour reconstruire le PKN au lieu
d’une méthode d’inférence de PKN utilisant des données scRNAseq, telle que LEAP (cf.
Chapitre 2, Section 2.4), car le PKN déduit a partir de ces méthodes peut étre biaisé par
les données.

De plus, notre PKN reconstruit comprend de nombreuses interactions géniques
dérivées des données d’analyse du cancer. Cependant, les mécanismes impliqués dans le
cancer different de ceux du développement embryonnaire, un probleme qui doit étre résolu.
Une solution potentielle pourrait étre 1'utilisation de la base de données DoRothEA [12],
telle qu’elle est employée dans BoNesis. Cette base de données contient des interactions
avec des niveaux de confiance variables, allant d’un niveau de confiance élevé (interactions
étudiées) a un niveau de confiance faible (prédictions), ce qui nécessite une utilisation
prudente. Une autre option consisterait a utiliser une méthode d’inférence basée sur les
données scRNAseq, en gardant toujours a 'esprit le biais potentiel des données dans le
PKN.

Enfin, nous avons recosntruit deux PKN différents (PK N et PKN 2), dont la taille
varie. Il a été observé que le PKN le plus grand, PKN 0, produisait des liens biologiques
inférés plus pertinents (voir Chapitre 5, Section 5.3.4). Malgré 'augmentation de la taille,

SCIBORG peut traiter ce probleme efficacement.
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Utilisation d’autres PKNs

Il est important de noter que ’étape de reconstruction du PKN est facultative dans
SCIBORG. Les utilisateurs et utilisatrices possédant un PKN adapté a leur étude de cas
spécifique ont la possibilité de 'utiliser et d’exécuter les étapes suivantes de la méthode.
Notre approche vise a étre aussi adaptable que possible pour prendre en compte les

différents PKNs spécifiques a 'utilisateur ou 1'utilisatrice.

Amélioration de I’étape de maximisation des readouts

La maximisation de la différence des readouts est implémentée en Python et intervient
apres l'identification des pseudo-perturbations en ASP. L’algorithme est simple, il calcule
les différences par paire dans les cellules redondantes (cf. Chapitre 4, Section 4.2.5.2). Bien
que l'on puisse envisager d’améliorer ce processus avec d’autres algorithmes, ce n’est pas
une priorité puisque le temps d’exécution est raisonnablement court (moins de 5 minutes
sur un ordinateur portable).

Une autre option consisterait a incorporer des contraintes supplémentaires dans
le programme ASP d’identification des pseudo-perturbations, afin de maximiser les
différences de readouts directement dans le processus de résolution ASP. Toutefois,
cette approche serait tres gourmande en ressources, ce qui compliquerait et allongerait
considérablement la recherche de pseudo-perturbations.

En outre, nous utilisons une maximisation des différences de readout pour traiter les
redondances cellulaires, dans le but d’obtenir la plus grande différence entre les deux
stades étudiés et, potentiellement, de mieux les distinguer. Cependant, d’autres criteres
pourraient étre envisagés. Nous avons exploré un critere de valeur de “readout moyen”, qui
implique le calcul des valeurs de readouts moyennes de toutes les cellules redondantes. Les
BNs appris avec ce critére n’étaient pas significativement différents de ceux obtenus avec

I’approche de maximisation des readouts, ce qui nous a conduit a retenir cette derniere
dans SCIBORG.

Parametres de Caspo

Pour déduire les réseaux Booléens a l'aide de Caspo, nous avons utilisé différents
parametres.
Le premier parametre considéré est la fitness tolerance, qui vise a fournir une tolérance

en termes de MSE pour 'apprentissage des réseaux Booléens. Dans nos deux contributions,
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nous fixons la valeur de fitness tolerance a 0,0001, ce qui permet d’explorer au-dela du
BN optimal jusqu’a une distance de 0,01% par rapport a la MSE optimale. Nous avons

choisi cette valeur parce que c’est celle qui fournit en moyenne les BNs les plus pertinents.

Le deuxieme parametre est la tolérance de taille, qui fixe un niveau de tolérance pour
I’exploration des BNs avec un nombre de nceuds allant de la taille optimale jusqu’a une
tolérance maximale définie par I'utilisateur ou l'utilisatrice ajoutée au nombre optimal
de neceuds. Nous avons choisi de ne pas fournir de tolérance en termes de taille car notre

objectif est de trouver des modeles Booléens minimaux.

Le troisieme parametre est la longueur, qui limite le nombre d’interactions entrantes
dans une porte logique “ET”. Nous avons fixé cette longueur a 2 afin de simplifier les

mécanismes de régulation déduits, réduisant ainsi la complexité du probleme.

L’exploration plus approfondie de ces parametres en testant différentes valeurs pourrait

potentiellement produire des résultats plus robustes.

Améliorer la composition des BNs inférés

La composition des interactions géniques déduites est parfois insatisfaisante. Dans
notre premiere contribution, les BNs appris comprenaient des genes intermédiaires
directement liés aux readouts (cf. Chapitre 4, Section 4.3.3), ce qui n’est pas
biologiquement informatif. Pour résoudre ce probleme, nous avons incorporé des
contraintes supplémentaires dans le programme ASP d’identification des pseudo-
perturbations de SCIBORG, afin de sélectionner les genes d’entrée et les genes
intermédiaires qui sont connectés (cf. Chapitre 5, Section 5.2.3, Contrainte 4). Cette

approche a permis d’inférer des réseaux biologiques plus pertinents.

Cependant, les BNs appris restent déconnectés lors de 'utilisation de la normalisation
“arctangeante” (cf. Chapitre 5, Section 5.3.4). Pour déduire des réseaux plus connectés,
qui incluent des “cascades” des genes d’entrée au readouts en passant par des genes
intermédiaires, le programme ASP de Caspo doit étre modifié en profondeur. Cette tache
est difficile puisqu’elle nécessite une compréhension approfondie de chaque regle ASP
pour apporter les modifications nécessaires, mais elle peut conduire a des résultats plus

significatifs, ce qui est inestimable pour la modélisation.
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Méthodes de I’état de ’art

Les méthodes de modélisation utilisant SMT ou ASP énumerent une quantité massive
de modeles possibles. Les méthodes de I’état de 'art traitent cette explosion de solutions
en échantillonnant des modeles (BoNesis ou RE:IN) ou en s’appuyant sur des expériences.
En revanche, SCIBORG permet d’identifier des modeles équivalents au cours du temps
(cf. Chapitre 5, Section 5.3.3.1). Nous démontrons que le nombre de modeles possibles est
trés limité. Par rapport aux méthodes de 1’état de I’art, notre espace de solution est plus
restreint, avec seulement 2 modeles contre des centaines voire des milliers. Ces résultats
fournissent un niveau élevé de confiance dans nos résultats et soutiennent fortement la
validation expérimentale dirigée de nos modeles.

De plus, nous observons que SCIBORG prend en compte ’hétérogénéité des cellules
par l'identification de plusieurs cellules (environ 100) au sein de chaque classe. Pour chaque
cellule, nous considérons un panel d’environ 30 genes, dont le profil d’expression nous
permet d’apprendre les BNs. En revanche, BoNesis travaille avec une moyenne de cellules
au sein d’une classe, tandis que RE:IN utilise des données en vrac. SCNS prend en compte
les données de cellules uniques sur une fenétre d’environ 40 genes ; cependant, il ne gere pas
I’expression redondante entre les cellules. La prise en compte de I'hétérogénéité cellulaire
permet & SCIBORG de prendre en compte les redondances couramment présentes dans
les données transcriptomiques de cellules uniques, un facteur qui n’est pas pris en compte

dans les autres méthodes de 1’état de 1’art.

Perspectives

Les travaux menés au cours de cette these constituent une avancée significative dans
la modélisation du développement embryonnaire humain. Bien que notre recherche se
soit concentrée sur la modélisation du trophectoderme moyen et tardif (TE), il reste de
nombreux domaines a explorer.

Tout d’abord, nous prévoyons d’analyser d’autres stades de développement impliqués
dans le développement préimplantatoire humain. L’objectif premier est de poursuivre
I’exploration de la maturation du TE en incluant le TE précoce, une phase qui se produit
avant les autres. Par la suite, nous souhaitons étendre notre analyse a d’autres stades de
développement afin d’étudier les autres destins cellulaires : ’endoderme primitif (PrE) et
I'épiblaste (EPI).

Deuxiemement, nous prévoyons d’approfondir I'étude du classificateur cellulaire
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proposé avec SCIBORG pour classer les cellules dans les stades correspondants. Cet outil
pourrait aider a classer les cellules non définies qui apparaissent dans les analyses menées
par Meistermann et al. [13] (cf. Chapitre 3, Section 3.2). Pour y parvenir, nous devons
explorer les stades voisins de ces cellules, en nous concentrant en particulier sur 'EPI et

le PrE, ce qui rejoint le point précédent.

Les BN déduits pourraient étre challengés par simulation, par exemple en désactivant
un gene et en observant le comportement des BNs et de 'expression génique qui en
résulte. Cette approche puissante faciliterait les prédictions in silico, en fournissant des

informations précieuses et en guidant éventuellement la validation expérimentale.

Parallelement aux modeles informatiques que nous déduisons, les modeles biologiques,
en particulier les blastoides (cf. Chapitre 1), sont des outils prometteurs pour la validation
des modeles informatiques avec moins de contraintes légales. Les blastoides pourraient étre
tres utiles pour valider in vitro les simulations in silico et confirmer ainsi les hypotheses

posées.

Egalement, nous prévoyons d’appliquer SCIBORG & d’autres études biologiques. Nous
collaborons avec une équipe du laboratoire CRCI°NA de Nantes, qui travaille sur le
développement des cellules lymphoides internes. Leur objectif est de comprendre les
mécanismes de régulation des genes impliqués dans la différenciation de ces cellules.
SCIBORG pourrait contribuer a l’identification de mécanismes inconnus dans ce

processus.

En fin de compte, SCIBORG facilite la modélisation statique par le biais des réseaux
d’interactions déduits. La modélisation des processus dynamiques survenant au cours
du développement embryonnaire constitue une orientation intéressante pour les travaux
futurs. A cette fin, une extension de Caspo, connue sous le nom de Caspo Time Series
(Caspo-ts) [14], pourrait étre employée. Etant donné un réseau de connaissances préalables
(PKN) et des données de séries temporelles, qui pourraient étre déduites de I’expression
génique pseudo-temporelle dans notre cas, Caspo-ts infere des BNs compatibles a la fois
avec les interactions géniques définies dans le PKN et avec les modeles d’expression génique
identifiés dans les données de séries temporelles.

Des travaux préliminaires ont été menés par des étudiants et étudiantes que j’ai co-
supervises avec Carito Guziolowski, explorant cette approche et aboutissant a des résultats

prometteurs. Cette perspective constitue la base d’une nouvelle these de doctorat qui
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débutera prochainement. Je suis trés heureux de constater que les travaux menés pendant

ma these seront poursuivis et étendus.
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CHAPTER 1

INTRODUCTION

“The scientist is not a person who gives the right answers, he’s one
who asks the right questions.”
— Claude Lévi-Strauss (1908-2009)

Summary

This chapter offers a global introduction of the manuscript. We provide the
context of the thesis and then outline the human embryonic preimplantation
development process. Then, we present the objective of the thesis and the
overview of our modeling method. This chapter finishes with a presentation

of the contributions made during the thesis and an outline of the manuscript.

1.1 Context . . . . . . . 1

1.2 Human preimplantation embryonic development . . . . . . . . . ... ... 3

1.3 Objective . . . . . . . )

1.4 Overview of our modeling approach . . . . . ... ... ... ... .. ... )

1.5 Contributions . . . . . . . .. .. 6

1.6 Outline of the manuscript . . . . . . .. .. ... ... L. 9
1.1 Context

In 2015, Lewis Wolpert, Cheryll Tickle and Alfonso Martinez Arias stated,

“Understanding how embryos develop is a huge intellectual challenge, and one of

the ultimate aims of the science of developmental biology is to understand how we

humans develop.” [1]. Several factors drive the need to better understand embryonic

development. Certain regulatory mechanisms remain elusive, and the emergence of
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specific developmental stages needs further detailed analyses. Additionally, a deeper
understanding will help to enhance assisted reproductive technologies (ART), such as
in vitro fertilization (IVF), by optimizing embryo culture conditions. When parents face
difficulties conceiving, they can opt for IVF, which involves culturing embryos in vitro
(in plastic boxes in a wet lab) for 5-6 days before transferring the embryo into the
female uterus. This process requires a specific culture medium, and various evaluation
methods are used to select the embryos for implantation. Despite being practiced for
several decades, success rate of IVF is relatively low, around 20—-30% [2]. Thus, improving

our understanding of human embryo development is crucial.

Study human embryo is complex, due to various factors.

First, the legal framework is very strict, and embryo culture must adhere to many
regulation rules. In France, research activities on embryos are constrained and scrutinized
by the Agence de la Biomédecine. Research must use embryos donated to the research
from IVF, with restrictions such as not culturing embryos for more than 14 days post-
fertilization or introducing cells from another species into a human embryo.

Second, cultivating human embryo in vitro requires highly specialized technical skills,
including the development of culture protocols and the handling of embryos. In addition,
the composition of culture media plays an important role in embryo development.

Third, human embryos are biologically complex. The regulatory mechanisms occurring
during the development are specific and follow an orchestration that is not yet fully
understood. The limited number of embryos and sample variability further complicate

the analyses.

These challenges highlight the need for alternative solutions to study human embryo
development. These solutions are not intended to replace the biological analysis of human
embryos but to provide complementary insights. Two essential approaches for studying of
human embryonic development are: (i) cellular models and (7i) computational models.

To biologically model human embryos, stem cells can be used to represent specific
developmental stages or cell fates [15, 16]. These cells have the ability to differentiate into
multiple cell types and can be genetically modified to mimic specific embryonic stages or
lineages. In 2022, a specific cellular lineage from stem cells was used to form blastoids [3].
A blastoid is a cell structure composed of three cell lineages (trophectoderm, epiblast
and endoderm; see next section for further details) forming a blastocyst, a developmental

stage of the embryo. The blastoid is morphologically similar to an embryo and capable
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to implant in the uterus [3]. These blastoids, which can be generated in a large number
of copies, offer a promising resource to address the lack of available embryos and test
hypotheses with less legal constraints.

Another approach to model human embryonic development is through computational
biology, using systems biology to infer computational models. These models enable
researchers to shift their perspective on the modeled system, potentially uncovering
new insights into human embryonic development. In addition, computational models
offer invaluable capabilities in predicting how perturbations impact such systems. Using
computational approaches also helps to overcome biological limitations and is very useful

for testing of hypothesis-driven research.

This thesis situates within a research project which aims to infer computational models
of the human embryonic development. We focus on preimplantation development for two
reasons. First, it is the most well-understood part of early embryo development, making
it suitable for validating our modeling findings. Second, it is the part that is reproduced
in vitro during IVF. Therefore, modeling this stage will be beneficial for future IVF

improvements.

In the following sections, we first present the human embryonic preimplantation

development, and then outline the objective of this thesis.

1.2 Human preimplantation embryonic development

Human embryonic development begins with the fertilization of an oocyte by a
spermatozoon (Figure 1.1A). The fertilized zygote then divides approximately every 24
hours, forming the morula by day 4. At this stage, cells start to differentiate into various
types. Preimplantation development continues until the implantation of the embryo into
the female uterus. During this development, several key events will take place.

The first major event is zygotic genome activation (ZGA) which happens at the 8-cell
stage. This is followed by the first cell specification, where the inner cell mass (ICM)
segregates from the trophectoderm (TE), marking the initial fate decision by the cells.
A second specification within ICM leads to the formation of the epiblast (EPI) and the
primitive endoderme (PrE), creating two distinct cell fates. Ultimately, these three cell
fates, TE, EPI and PrE, are present at the implantation phase.

Each of these cell fates has a specific role in development. The TE will form the
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placenta, the PrE will become the yolk sac of the fetus and the EPI is destined to be the
future fetus. The stages of preimplantation embryonic development can be summarized

in the schema presented in Figure 1.1B.

A Segmentation

Day 1 Day 2 Day 3

2 cells 4 cells 8 cells

=, Blast tB1
‘ ﬂ o
Morula \ Iasto. B2 Day 5
'
N \)‘i
Day 6
Implantation
Post-implantation
‘ embryo

Primitive
Pre Endoderme

Day 0

B 24 specification

Inner Cell Mass

EP| Epiblast

| 15t specification TE Trophectoderm

| | |
early TE  mediumTE  late TE

Figure 1.1 — The human preimplantation embryonic development.

(A) Different steps of the preimplantation development. The oocyte is fertilized by a spermatozoon,
forming a zygote. The zygote divides approximately every 24 hours, developing into the morula. Cells
start to differentiate through two successive specifications, resulting in three cell fates. The embryo
implants into the female uterus. Notice that the colors of cells correspond to cell fates represented in (B).
(B) Schematic representation. During the human embryonic preimplantation development, two
specifications occur, leading to three cell fates: primitive endoderme (PrE), epiblast (EPI) and
trophectoderm (TE). In the TE maturation, three phases are observed: early TE, medium TE and late
TE.

Figure adapted from Meistermann [4].
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1.3 Objective

This thesis is part of a research project aimed at defining the dynamic processes
involved in cellular differentiation, leading to the three cell fates: epiblast, primitive
endoderm, and trophectoderm. By analyzing the regulatory mechanisms involved in
embryonic development, a better understanding of development could lead to optimizing
embryonic culture conditions and thereby increasing the success rates of IVF.

In this context, the objective of this thesis is to understand gene regulatory mechanisms
involved in human embryonic development. Considering multiple developmental stages,
the central question is how the embryo transitions from one stage to another, and which
mechanisms influence these decisions. While various genes are known to be important
during certain developmental stages, the regulatory mechanisms between these genes (and
potentially unknown ones) remain to be discovered.

This objective presents several challenges. The first challenge is associated to the
data. We use single-cell transcriptomic data comprising a vast number of cells and genes
to consider (around 1,500 cells and over 20,000 genes; see Section 4.2.3.1). This data
is noisy and contains a high concentration of zero values, making the analysis complex
(see Section 2.2.3). The second challenge concerns the studied system which cannot be
perturbed. This complicates the task of modeling and validating the obtained outcomes.

In this thesis, we will focus principally on the trophectoderm (TE) fate maturation.
The TE goes through three phases of maturation: early, medium and late (Figure 1.1B).
Additionally, the TE, particularly in its late phase, is responsible for the embryo’s
attachment to the uterus, a crucial role for the future development of the fetus. Therefore,
further understanding this maturation and developing computational models of TE will

provide invaluable insights for the field.

1.4 Overview of our modeling approach

In this section, we provide the overview of our modeling approach. Consider two
developmental stages, for instance medium and late TE, we make the postulate that a
medium TE cell can stay in this stage or can differentiate into late TE stage (Figure 1.2A).
Medium TE cell can be seen as an initial state, while late TE cell can be seen as a final
state. Let us consider this problem as a perturbation problem. We have a perturbation

set made on the system and the observations captured at the initial and final states.
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Given all possible transitions, the objective is to find paths explaining how the system
can go from the perturbations to the observations. State-specific paths will serve to model
states. Therefore, both models explain how the system can go from the perturbations to
the observations.

Considering single-cell transcriptomic data, each cell had a specific expression for each
gene (Figure 1.2B). The idea is to identify similarities and differences, in terms of gene
expression, between the two states (or cells). The similarities can be seen as pseudo-
perturbations and the differences can be seen as pseudo-observations (Figure 1.2C).
Here, we take the example of one cell; however, multiple cells form stages, yielding
a set of pseudo-perturbation and pseudo-observation pairs that need to be considered.
Afterwards, given all possible gene interactions derived from prior-knowledge, combined
to pseudo-perturbations and pseudo-observations extracted for all individual cells at each
stage, pseudo-perturbations—pseudo-observations paths are learned, modeling each state
(Figure 1.2D).

1.5 Contributions

During this thesis, part of the work I led has been published. Over the past three
years, I had the opportunity to be the first author for two publications and contribute as
a co-author to a third publication. In addition, a fourth publication, in which I will be

the first author, is currently being written for submission to a journal.

The first publication, Bolteau et al. [5], presented in Chapter 4, introduces the method
we developed aiming to infer Boolean networks from both prior knowledge and single-cell
transcriptomic (scRNAseq) data. This work was published in the proceedings of the 19th
International Symposium on Bioinformatics Research and Applications (ISBRA 2023).
I also presented our work at the conference held in Wroctaw, Poland. Our objective
in this contribution is to explore human embryonic development, specifically focusing
on understanding trophectoderm (TE) maturation. We use scRNAseq data to develop a
framework for inferring computational models that distinguish between two developmental
stages involved in embryo development. Our method selects pseudo-perturbations from
scRNAseq data since actual perturbations are impractical due to ethical and legal
constraints. By combining these pseudo-perturbations with prior-regulatory networks, we

can infer Boolean networks that accurately align with scRNAseq data for each studied
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Figure 1.2 — Overview of our modeling approach.
(caption on next page.)
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developmental stage. Our publicly available method was tested with several benchmarks,
proving the feasibility of our approach. Applied to the real dataset, we infer Boolean
network families, corresponding to the medium and late TE developmental stages. Their
structures reveal contrasting regulatory pathways, offering valuable biological insights and

hypotheses within this domain.

The second publication, Bolteau et al. [6], presented in Chapter 4, was published
in the Journal of Computational Biology (JCB) in 2024. This contribution provides
a deeper exploration of the first paper’s findings. Here, we utilize scRNAseq data to
model gene regulatory mechanisms involved in two human developmental stages: medium
and late trophectoderm (TE). We identify 20 pseudo-perturbations, that are integrated
with prior knowledge gene interactions to infer stage-specific Boolean networks (BNs).
These BNs delineate distinct regulatory mechanisms, enabling the differentiation between
these developmental stages. We show that our program outperforms existing pseudo-
perturbation identification tools. Our framework contributes to comprehending human
developmental processes and holds potential applicability to diverse developmental stages

and other research scenarios.

The third publication, Le Bars et al. [7], was published in BMC Bioinformatics journal
in 2023. In this publication, where I am a co-author, we introduce MajS, a method aimed
at enhancing the modeling of regulatory networks to facilitate their integration with
metabolic networks. Given a regulatory network and a discrete partial set of observations
as input, MajS tests the consistency between the input data, proposes minimal repairs on

the network to establish consistency, and finally computes weighted and signed predictions

(continued from previous page.)

(A) A cell in the medium TE stage can either remain in the medium TE stage or differentiate into the
late TE stage.

(B) Each cell exhibits a specific expression pattern for each gene. Some genes are similarly expressed in
both cells (e.g., g4, 9B, 9c, 9D, 9E, 9r), while others show differential expression.

(C) Pseudo-perturbations are identified (g4, 9B, 9¢, 9D, 9E, gr). Some of other genes form the pseudo-
observations (9a, 9u, 91, 97, 9K ). Here, we take the example of one cell; however, multiple cells form
stages, yielding a set of pseudo-perturbation and pseudo-observation pairs that need to be considered.
(D) Given all possible gene interactions derived from prior-knowledge, combined to pseudo-perturbations
and pseudo-observations extracted for all individual cells at each stage, stage-specific models are learned.
Activation interactions are represented by normal green arrows (—), while inhibition interactions are
depicted by red T-arrows (—).

Figure created with BioRender.com.
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over the network species. We tested MajS by comparing the HIF-1 signaling pathway with
two gene-expression datasets. Our results show that MajS can predict 100% of unobserved
species. When comparing MajS with two similar (discrete and quantitative) tools, we
observed that compared with the discrete tool, MajS proposes a better coverage of the
unobserved species, is more sensitive to system perturbations, and proposes predictions
closer to real data. Compared to the quantitative tool, MajS provides more refined
discrete predictions that agree with the dynamic proposed by the quantitative tool. MajS
is a new method to test the consistency between a regulatory network and a dataset
that provides computational predictions on unobserved network species. It provides fine-
grained discrete predictions by outputting the weight of the predicted sign as a piece of
additional information. MajS’ output, thanks to its weight, could easily be integrated with

metabolic network modeling.

Finally, a fourth publication is currently being written to be submitted to
computational biology journal in the near future. This publication will present the ready-
to-publish findings of the Chapter 5, showcasing more robust and more relevant Boolean
networks modeling medium and late TE stage. This paper will highlight our method,
SCIBORG, including enhancements over the method used in the two first published

articles.

1.6 Outline of the manuscript

This manuscript is organized around five chapters.

Chapter 2 “State of the art in single-cell transcriptomic data modeling” discusses
the current landscape of single-cell data modeling. It includes an overview of single-cell
transcriptomic sequencing and an analysis of three modeling tools.

Chapter 3 “Background” presents necessary definitions and provides an overview of
the used data. It also reviews the programming paradigm and the various methods used
in the implemented study.

Chapter 4 “Contribution 1: Inferring Boolean networks to model human
preimplantation development” details the method implemented for modeling
developmental stages using Boolean network inference. This chapter highlights the key
findings presented in the two published articles Bolteau et al. [5] and Bolteau et al. [6].

Chapter 5 “Contribution 2: More robust inferred Boolean networks using SCIBORG”
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highlights the enhancements we made to the previous method, resulting in more robust
outcomes. This second contribution will be the subject of an upcoming article to be

submitted to a journal.
Chapter 6 “Discussion and Perspectives” offers an overall discussion of the work

presented in this manuscript and outlines future perspectives.

10



CHAPTER 2

STATE OF THE ART IN SINGLE-CELL
TRANSCRIPTOMIC DATA MODELING

“We create models to have two things that we do not understand, the
problem and the model of the problem.”

— Unknown author

Summary

This chapter provides a state-of-the-art review of single-cell transcriptomic data
modeling in the context of studying human embryonic development. First, we
present single-cell transcriptomic sequencing. Next, we discuss two methods
commonly used in the field to analyze scRNAseq data. We then introduce three
types of methodology of gene regulatory network inference, which are useful for
obtaining a global overview of the regulatory mechanisms involved in the studied
system. In the final section, we explore methods for modeling biological systems,
particularly adapted to the study of cell differentiation. We present three tools

and discuss their perspectives on modeling human embryonic development.

2.1 Introduction . . . . . . . .. 12
2.2 Single-cell transcriptomic sequencing . . . . . . .. ..o 13
2.2.1 Revolutionizing cell differentiation studies . . . . . . . . .. ... ... ... 13
2.2.2  The process of single-cell transcriptomic sequencing . . . . . . . . ... ... 14
2.2.3 Zero-inflation in scRNAseq analysis . . . . . . . . ... ... ... ... 15
2.3 Methods of scRNAseq data analysis . . . . . . .. ... ... ... ... .... 16
2.3.1 UMAP, a widely used dimension reduction method . . . . .. ... .. ... 16
2.3.2 Pseudotime, a cell hierarchy trajectory . . . . . . .. .. ... ... ... .. 18
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2.4  Methods of gene regulatory network inference . . . . . . . ... ... ... .. 18
24.1 Methods review . . . . . . ..o 19
2.4.2 DiScussion . . . . . . ... e 22
2.5 Methods of modeling . . . . . . .. .. 23
2.5.1 Methods Review . . . . . . . . . . ... 23
2.5.2 Discussion . . . . . ..o 28

2.1 Introduction

In 2002, Hiroaki Kitano stated, “to understand complex biological systems requires the
integration of experimental and computational research — in other words a systems biology
approach” [17]. The use of systems biology has become indispensable for understanding
complex biological systems due to the vast amount of data generated by new sequencing
technologies, such as single-cell transcriptomic sequencing. The systems biology approach
involves collecting systemic data and abstracting it, typically through networks, to
represent the studied system. These constructed networks model the system and allow for
simulations and predictions.

We can define three principal types of biological networks [18]: (7) signaling networks,
which comprise interconnected signaling pathways present in cells; (i) gene regulatory
networks, which represent the transcriptional interactions of genes within cells; (%ii)
metabolic networks, which encompass biochemical mechanisms involved in cellular
functions.

Biological networks can be modeled using various formalisms. Some examples of them
are: Bayesian networks [19], Petri nets [20], and Boolean networks [21]. In our project,
the large amount of data (scRNAseq data) increases the model complexity. Therefore,
our method requires a formalism capable to handle large number of features. We focus
on Boolean network formalism due to its strong abstraction, which is easier to manage
in modeling. In addition, this formalism has been employed in numerous studies and has
proven useful in systems biology modeling [22], reinforcing our choice.

Our thesis falls within the context of model inference aiming to infer, analyze,
and understand the regulatory mechanisms involved in a biological system [23]. The
modeling is generally based on prior knowledge which can consist on known interactions
between genes or sequencing data, etc. For our thesis, we focus on gene regulatory

networks (GRNs) that incorporate prior knowledge. Diverse methods to reconstruct

12
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GRNs exist, such as: (i) inferring GRNs directly from single-cell data, or (i) inferring
GRNs from databases containing gene interactions validated by diverse methods, such
as experimental or simulated ones. This prior knowledge is refined using observations
to build a specific network modeling the system. In our case, we aim to model a cell
differentiation phenomenon using single-cell data combined with prior knowledge from
databases. The objective of this type of modeling is to understand the gene regulatory

mechanisms occurring during cell differentiation.

In this chapter, we first present how single-cell transcriptomic sequencing works.
This sequencing method was used to generate the data for our thesis project. In
Section 2.3, we present two classical tools used to analyze scRNAseq data, which are
utilized in the subsequent methods we present. In Section 2.4, we explore various methods
for reconstructing gene regulatory networks from single-cell transcriptomic data. In
Section 2.5, we introduce three methods for modeling single-cell data using Boolean
networks. Finally, we discuss the modeling methods by outlining their advantages and

drawbacks.

2.2 Single-cell transcriptomic sequencing

2.2.1 Revolutionizing cell differentiation studies

For years, bulk RNA sequencing (bulk RNAseq) has been instrumental in
understanding biological mechanisms by analyzing pooled cell samples, from specific tissue
for instance [24]. After bioinformatics analysis, bulk RNAseq enables the identification
of the quantity of genes, i.e., the expression of genes, within a cell population [25].
This technic leads to significant discoveries such as the construction of a map of
functional elements in the human genome by the ENCODE consortium [26], or the
revealing of transcriptomic signatures in the cortex for Alzheimer disease patient [27].
However, bulk sequencing, while valuable, overlooks the complexities where individual
cells impact the global system like in cell differentiation. Thus, another sequencing
method is required to better analyze these mechanisms. The introduction of single-cell
transcriptomic sequencing (scRNAseq) in 2009 by Tang et al. [28] revolutionized cell
differentiation studies. By sequencing cells individually, scRNAseq allows for the precise

identification of gene expression in each cell and facilitates the discovery of marker genes.

13
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2.2.2 The process of single-cell transcriptomic sequencing

In this section, we describe briefly the process of the scRNAseq starting, in the
context of studying human embryonic development, from the embryo to the single-cell

gene expression, illustrated in Figure 2.1.

Isolation of cells The first step of scRNAseq is the isolation of cell. In this thesis
manuscript, we only focus on embryonic cells sequencing, where cell isolation can differ
from others techniques in different domains. Embryos are cultured until reaching the
desired developmental stage, followed by laser dissection to separate polar (containing
TE, PrE and EPI cells) side and mural side (containing TE cells) [13] (Figure 2.1A and
B). Subsequently, cells are dissociated (Figure 2.1C), annotated with essential information

like embryo origin or developmental stage, and prepared for sequencing.

Preparation of the library After individual cells are lysed to extract RNA, each RNA
molecule is barcoded by attaching short RNA sequences to its ends [29, 30] (Figure 2.1D).
These barcodes facilitate the conversion of RNA into complementary DNA (cDNA),
necessary for sequencing. cDNAs are then amplified in order to generate a sufficient
quantity of molecules for the library preparation and the sequencing [29, 30] (Figure 2.1E).
There are several steps in the procedure for preparing cDNA for sequencing, as detailed
in Jovic et al. [29] and Hwang et al. [31].

Sequencing Nowadays, multiple sequencers exist; in this manuscript, we only present
the general process of sequencing without presenting the specificity of certain methods.
Briefly, the ¢cDNA strand is scanned in order to determine its nucleotide sequence
(Figure 2.1F). The resulting sequences, called reads, correspond to the transcripts of the

cell.

Bioinformatics analysis The reads are aligned to a reference genome in order to
identify the corresponding genes, forming a count matriz indicating read counts per gene
per cell (Figure 2.1G). This (raw) count matrix undergoes various filtering methods to
enhance data quality [29, 32, 33]. When integrating datasets from different sequencing
runs, normalization ensures comparable gene expression levels. Moreover, this expression

can be normalized (for instance, log-normalization) using various tools.
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Figure 2.1 — Single-cell RNA sequencing workflow.
A) Embryo dissection using a laser (red dashed line in second image).
B) Schematic illustration of the cell dissociation process.
C) Isolated cells are lysed to extract RNA.
D) RNA are captured and converted into cDNA.
E) ¢cDNA are amplified to obtain a sufficient quantity of molecules for sequencing.
F) After library preparation, cDNA are sequenced, producing multiple reads for each cell.
(G) Bioinformatics analysis process the reads to form a count matrix, comprising the number of reads
for each gene in each cell.
Figure adapted from Meistermann et al. [13].

2.2.3 Zero-inflation in scRN Aseq analysis

An essential consideration in sScRNAseq analysis is zero-inflation, wherein a significant
proportion of genes exhibit zero expression, a phenomenon more pronounced compared
to bulk RNAseq data [34, 35]. Two sources are possible for the zero measurements in
scRNAseq data: biological and non-biological [36]. On the first part, biological zero is
defined as an absence of a gene’s transcripts of messenger RNAs (mRNAs). These zeros

arise from two scenarios :
e no transcription, i.e., a non-binding of the RNA polymerase;

e absence of mRNA in the cell due to a faster mRNA degradation.
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On the second hand, non-biological zero is due to a loss of information about a truly
express gene. Contrary to biological zeros, non-biological zeros are due to a zero-expression
measurements of gene with transcripts in a cell. This underscores the need for meticulous

attention when analyzing and interpreting scRNAseq data.

2.3 Methods of scRNAseq data analysis

Various methods are employed to analyze single-cell transcriptomic data, aiming to
unveil underlying biological mechanisms and formulate hypotheses. These methods use
principally statistics or machine learning techniques. Given the vast amount of data
produced by scRNAseq, extracting meaningful insights can be challenging. Dimensionality
reduction techniques like PCA (principal component analysis) [37] are commonly used to
simplify the data. More advanced methods such as t-SNE [38] and UMAP [39] offer
complex dimensionality reduction capabilities (see Section 2.3.1).

Additionally, in the context of single-cell analysis, a common biological system studied
is cell differentiation. To understand the mechanisms behind these differentiations, one
can reconstruct trajectories in order to hierarchize cells and thus form trajectory called

pseudotime (see Section 2.3.2).

2.3.1 UMAP, a widely used dimension reduction method

UMAP (uniform manifold approximation and projection) [39] is a non-linear
technique of dimension reduction, primarly employed for data visualization purposes.
It transforms high-dimensional data and produces a low-dimensional graph, facilitating
easier visualization and interpretation. The UMAP algorithm comprises two steps
(Figure 2.2):

1. High-dimensional graph construction: Initiallyy, UMAP constructs a high-
dimensional graph that approximates the shape (or topology) of the data, known
as the manifold (Figure 2.2A). The algorithm constructs a graph where data points
are connected to their neighbors based on proximity, with the links weighted to
represent connection probability. This process preserves both local and global
structure, effectively capturing clusters as high-density regions and separations

between clusters as low-density regions.
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2.8. Methods of scRNAseq data analysis

2. Low-dimensional projection: In the second stage, the algorithm projects the
high-dimensional graph onto a lower-dimensional space (Figure 2.2B). The algorithm
optimizes the positions of data points in the low-dimensional space to retain the
local and global structure of the original data. UMAP achieves this by balancing
the proximity of nearby points while preserving overall data structure. The aim is to
maintain the underlying structure and patterns present in the data, making analysis

and interpretation easier.

A B
(I
- I
e |
7%
i L
7 N
Step 1: Compute a graphical Step 2 (non-parametric): Learn an
representation of the dataset embedding that preserves the

structure of the graph

Figure 2.2 — Overview of UMAP.
(A) High-dimensional graph construction.
(B) Low-dimensional projection.
Figure adapted from Sainburg et al. [40].

t-SNE (t-distributed stochastic neighbor embedding) [38] is similar to UMAP. Both
algorithms build a graph representing data in high-dimensional space and then reconstruct
a graph in a lower-dimensional space. In brief, the principal difference between UMAP
and t-SNE lies in their approach to reduce dimensions. t-SNE transforms the graph point
by point, focusing on preserving the local structure of the data, whereas UMAP considers
all points simultaneously by a compressing of the graph, maintaining a balance between
local and global structures. Both algorithms are competitive in terms of visualization
quality [39, 41]. However, UMAP outperforms t-SNE in terms of runtime performance
and its ability to handle larger datasets [41]. UMAP also maintains a balance between
local and global structure and produces consistent outputs for the same dataset due to
its deterministic nature [41, 42]|. In contrast, t-SNE generates different low-dimensional
graphs for each run. Additionally, UMAP supports supervised dimension reduction, using

the use of categorical label information.
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2.3.2 Pseudotime, a cell hierarchy trajectory

To study dynamic process, reconstruct trajectories of cells is an efficient method. The
pseudotime is an arbitrary metric measuring the position of a specific cell in the studied
dynamic process [43]. By ordering the cells according to this pseudotime one can identify
different transition stages in the studied system. Pseudotime can also be conceptualized
as the total amount of transcriptomic change from the least “mature” (or root) cell in
the cell trajectory [4]. This method offers the possibility to observe the gene expression
evolution during a cell transition.

A plethora of method of trajectories inference exists, such as STREAM [44],
Slingshot [45] or TSCAN [46]. Most of pseudotime inference methods have similar
processes [43, 47], comprising three principal steps: (i) a reduction of dimension, (7i)
a learning of trajectories using tree or graphs, and (7i) an assignment of a position on
the learned trajectory for each cell.

We propose to explore deeper the methodology of Monocle [48], a software for
pseudotime inference used in the paper by Meistermann et al. [13], which provides the
input results of this thesis (see Section 3.2). Before the reduction of dimension, Monocle
allows for the selection of ordering genes, defining the trajectory’s progression. These
genes can be selected using expert knowledge of the biological data leading to a semi-
supervised learning. Otherwise, the software provide tools to select unsupervisedly these
genes. Once the ordering genes are selected, Monocle applies the dimension reduction using
an algorithm, based on manifold learning, similarly to UMAP (Figure 2.3). Afterwards,
Monocle constructs a spanning tree using a set of centroids chosen automatically using a k-
means clustering. The positions of cells are then updated based on the current trajectories
formed by the tree. Finally, the user selects a “root” meaning the start of pseudotime (value
0). Then, each cell’s pseudotime is calculated using a distance along the tree to the root.
It is important to note that the cell ordering is “root-dependant” leading to non-unique
ordering. For instance, in Meistermann et al. [13], which uses Monocle, 5,000 pseudotime

orderings were generated.

2.4 Methods of gene regulatory network inference

In addition to data analysis methods, gene expression in (single-cell) transcriptomic
data can be used to infer networks known as gene requlatory networks (GRNs). GRNs,

mathematically defined as graphs, are generally inferred de novo from gene expression
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Figure 2.3 — Pseudotime trajectories learning using Monocle.
Each cell is represented as a point in a high-dimensional space where each dimension corresponds to
the expression level of an ordering gene. The high-dimensional data (X) are first reduced onto a lower
dimensional space (Z). A spanning tree is then constructed selecting automatically a set of centroids.
The algorithm moves each cell toward the nearest vertex of the tree. Finally, the user selects a “root”
and each cell’s pseudotime is calculated based on the learned tree.
Figure adapted from Qiu et al. [48].

measurements. A plethora of methods exist for GRN inference from single-cell data,
many of which are discussed in reviews by Badia-i-Mompel et al. [49] and Nguyen et
al. [50]. There are three approaches of network construction: (i) gene correlation, (i)
correlation ensemble over pseudotime, (7ii) differential equations. All methods follow a
similar workflow presented in Figure 2.4. Initially, gene expression data is filtered and
then transformed into the necessary structure. Each method employs a specific technique
to infer the output network. The resulting GRN can be directed or undirected, and
represented as a graph or adjacency matrix, depending on the method. In the following

paragraphs, we review these three inference methods, and then discuss them.

2.4.1 Methods review

Gene correlation Gene correlation methods are based on the pair-wise relationship
between genes using a correlation metric. First, the methods generate a gene correlation
matrix, following a method-specific correlation metric (Figure 2.51). The generated matrix

is often too complex to form a meaningful GRN. Correlation are tested to filter out
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Figure 2.4 — Overall workflow of GRN inference methods.
First, gene expression data is filtered. Data is then transformed, depending on the method, in order to
infer a network. This output network can be either co-expression network or directed network.
Figure adapted from Nguyen et al. [50].

ones that are not significant (Figure 2.5ii). Finally, kept correlations form the GRN
(Figure 2.5iii).

These methods provide a good estimation of the connections between genes but are
unable to infer regulations between genes, such as activation of inhibition of one gene on
another. Some approaches attempt to overcome this limitation by enriching the network
with known regulatory mechanisms from databases. SCENIC ' [51] examplifies this by
combining gene interaction data with transcription factor (TF) binding motif enrichment.

This category of GRN reconstruction is used, for instance, in SINCERA [52],
NLNET [53] or Information [54], that are tools to infer GRNs from scRNAseq data using

gene correlations.

0 (i) O Je= (iii <2
— —>= —> ‘
@—©= 0

Expression Gene correlation Ranked edges Regulatory
Data network

Figure 2.5 — Workflow of GRN inference method

based on correlation.
(i) Expression correlations are calculated from for each gene pair.
(ii) Correlations are filtered to keep only significant correlations.
(iii) The GRN is then formed.
Figure from Nguyen et al. [50].

1. A technical specification sheet of SCENIC is available in Appendix A.
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Correlation ensemble over pseudotime Methods in this category use gene
correlation to infer gene relationships. In addition to gene correlation (only) based
methods, here, the notion of time is taken into account. These methods assume that
the pair-wise relationships may change depending on the developmental stage. Thus,
correlations are calculated in specific time windows through a time ordering of cells. The
workflow of these methods consist of three main steps. First, the pseudotime trajectories
are calculated to order cells (Figure 2.6i). Second, data is divided in small-time windows
representing all possible time lags. For each possible time lag, gene correlations are
computed, resulting in a series of correlation matrices (Figure 2.6ii). Third, multiple
correlations are aggregated into an adjacency matrix indicating the sign of correlation
between genes (Figure 2.6iii) This matrix can easily be transformed into a directed and
signed GRN. It is important to note that the performance of GRN inference depends on
the accuracy of the time ordering, which may be not unique [50].

This category of GRN reconstruction is used, for instance, in methods for network
inference such as LEAP* [55], SCIMITAR [56], or SINCERITIES [57].

Regulatory network

| |
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| |
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| > o
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T
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| |
Pseudo-time e )
ordering Correlations Adjacency matrix

Figure 2.6 — Workflow of GRN inference method

based on correlation ensemble over pseudotime.
(i) The pseudotime trajectories are calculated from scRNAseq, providing an ordering of cells.
(ii) Data is divided into small-time windows, and the algorithm calculates the gene correlation for each
time window.
(iii) The method merges multiple correlation matrices into one adjacency matrix, which can be then
transformed into a GRN.
Figure from Nguyen et al. [50].

2. A technical specification sheet of LEAP is available in Appendix B.
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Differential equations Differential equations methods describe gene expression
dynamics over time using differential equations. They require time ordering of cells from
gene expression data (Figure 2.71). The methods define differential equations that describe
the relationships between genes with the respect to the inferred time (Figure 2.7ii).
Parameters used in these equations are estimated to finally yield an adjacency matrix
of the gene correlations (Figure 2.7iii and iv). Given the adjacency matrix and temporal
information, the methods can infer directed and signed GRN. The parameter calculation
through the differential equation is dependent to the number of genes and cells The
computation complexity and the number of parameters will exponentially increase
with large datasets. Therefore, this method category is more suitable for small-size
networks [50].

This category of GRN reconstruction is used, for instance, in SCODE [58],
SCOUP [59], or Inference Snapshot [60].
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Figure 2.7 — Workflow of GRN inference method

based on differential equation.
(i) From pseudotime trajectories inferred from scRNAseq data, differential equations are calculated to
describe the relationships between genes.
(ii) The parameters used in the equations are estimated using different optimization techniques.
(iii) The relationships between genes are inferred using the optimized parameters, leading to an adjacency
matrix of GRN.
Figure from Nguyen et al. [50].

2.4.2 Discussion

We present three families of methods using different frameworks for constructing
GRNSs. These categories, compared in Table 2.1, all use scRNAseq data as input. The first
category, enables the reconstruction of GRNs using only gene correlation without direction
or sign on the edges. This issue can be addressed with enrichment data, as demonstrated
by the SCENIC tool. Enrichment data refers to external sources of information that

are combined with internal data, in our case scRNAseq data, to improve its precision
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Table 2.1 — Comparison of gene regulatory network inference methods.

Method category ‘ Inputs ‘ Directed GRNs ‘ Signed GRNs
. e scRNAseq data « «
Gene correlation e (Binding site¥) X X
Correlation ensemble | ® scRNAseq data
. . . . v v
over pseudotime e Pseudotime trajectories
. . . e scRNAseq data
Differential equation e Pseudotime trajectories v v/

* By incorporating enrichment data using certain tools, it is possible to infer directed and signed GRNs.

and accuracy. Enrichment allows the inference of directed and signed networks; however,
the available information is limited. The two others categories, correlation ensemble over
pseudotime and differential equation methods, allow the inference of directed and signed
GRNSs. In addition, we note that the differential equation method is limited by the dataset
it can handle. The complexity of the method is correlated with the number of parameters,

which imposes a constraint on its applicability to larger datasets.

2.5 Methods of modeling

In the previous sections, we presented various methods for analyzing single-cell
transcriptomic data and inferring GRNs. The observations derived from these methods
provide a detailed picture, helping us to understand the systemic view of the studied
system based on the data. However, these methods have limitations when it comes to
generating predictions in cases of system modifications, such as genetic perturbations
or environmental changes. Therefore, it is crucial to delve deeper into the analysis of
scRNAseq data to overcome these limitations. In this section, we introduce three methods
used to model cellular differentiation processes. Following this, we discuss the applicability

and implications of these methods for modeling human embryonic development.

2.5.1 Methods Review

BoNesis, a synthesis tool of ensembles of Boolean networks The first method we
discuss is BoNesis [61, 62], which automatically synthesizes dynamic models represented

by ensembles of Boolean networks (BNs). This approach frames modeling as a Boolean
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satisfiability problem encoded in ASP, allowing the inference of BNs from the dynamical
properties of biological processes. BoNesis combines experimental data with prior
knowledge, treated as constraints, to generate ensembles of BNs compatible with both.
By integrating dynamic processes, this tool enables researchers to model phenomena such
as cell differentiation. The prior knowledge and biological observations are incorporated
into a logic program. Given defined constraints and rules, this logic program is then solved
yielding solutions composed of BNs that include: (i) gene interactions from all possible
ones given the knowledge, and (ii) dynamical properties compatible with observation

behaviors.

BoNesis requires three principal inputs: the prior knowledge network (PKN),
biological observations and dynamical properties. The PKN is an interaction graph
comprising components, particularly genes, and interactions characterized by activation
and inhibition between components (see Section 3.1.1 for interaction graph definition).
The PKN delimits the interaction that can be used by the synthesized BNs. Biological
observations provide information on the evolution of components in the studied process.
They can be gene expression measurements from transcriptomic sequencing, for instance,
associated with different time points (of an experiment or a cell). BoNesis works only with
binarized observations, necessitating a binarization step between the data collection and
BoNesis usage. The last input, dynamical properties, are discrete-time observations of the

system representing the behavior to be reproduced.

In addition to BN synthesis, BoNesis offers two complementary functionalities. The
first is the diversity in enumeration of the models. It is common to have numerous
compatible solutions for a given problem. Thus, BoNesis identifies a sub-ensemble of
possible models. This sub-ensemble should be the more relevant possible regarding the
diversity of BNs. While ASP solvers can enumerate compatible solutions by default, they
often explore solutions with minimal variations, leading to strongly similar solutions.
To address this, BoNesis employs heuristics of the solver to explore distant solutions.
The second functionality is the component selection. Typically, a large PKN includes
many components, but only a few are involved in the biological process. BoNesis defines
an optimization criterion to maximize the number of specific components, known as
“strong constants”, within the compatible BN. A strong constant is a component with
a constant value necessary for reproducing observations within the BN dynamics. By
prioritizing these strong constants, BoNesis ensures compatibility with biological data

while simplifying the interaction domain to focus on key regulating interactions of the
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observed process.

In Chevalier [63], the author uses BoNesis to model the regulation in hematopoiesis,
the differentiation process of blood cells. scRNAseq data from Nestorowa et al. [64] were
used to model this differentiation phenomenon. First, single-cell data were preprocessed in
order to extract observations and determine dynamical properties. Pseudotime trajectories
were reconstructed, revealing two bifurcations leading to three cell fates (Figure 2.8).
Observations were defined from trajectories by assembling neighboring cells at key steps
such as root, bifurcations or leaves (Figure 2.8, black circles). In total, six steps were
identified (S0 to S5), each comprising tens to a hundred of cells. Then, gene expression
were binarized using PROFILE method [8], which determine thresholds for each gene
based on its value distribution among cells, resulting in a presence of the gene (1), absence
(0), or non-significative expression (NA). All cells of the dataset were binarized, producing
a matrix composed of 0, 1 or NA. The expression value for the six observations was
then determined by setting the majority value of the constituent cells. Second, dynamical
properties were defined, such as positive reachabilities (e.g., allowed paths from S1 to S5
through S0 and S3 for instance), negative reachabilities (e.g., impossibility to go from
S2 to S3), or fix points (e.g., leaves like S4). Third, the PKN was constructed from
the DoRothEA database [65]. BoNesis was used to select relevant components from the
reconstructed PKN, thereby reducing its size. Finally, BoNesis synthesized 1,000 BNs, all
compatible with the PKN and the observations.

Figure 2.8 — Pseudotime trajectories of blood cells.
Pseudotime trajectories inferred from the STREAM tool [44]. Identified observations, represented by
circles, comprise a set of neighboring cells at key steps of the trajectories.
Figure from Chevalier [63].
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RE:IN, a method to synthesize logical models RE:IN (Reasoning Engine for
Interaction Networks) [66, 67] is a tool designed for the synthesis and analysis of logical
models to understand biological processes, such as cellular decision-making. Given a set of
experimental data and potential interactions, RE:IN constructs Boolean network models,
using an automated reasoning, via SMT (Satisfiability Modulo Theories) encoding.
Rather than generating a single network model, RE:IN produces a set of models, each
consistent with the experimental data and possible behaviors, enabling researchers to

make predictions and explore various biological questions.

RE:IN requires two inputs: an abstract Boolean network (ABN), and experimental
constraints. First, the ABN defines potential interactions between genes in the studied
system (Figure 2.9). In addition to the genes, inputs conditions are considered, enabling
the perturbations on the system. These possible interactions are inferred from gene
expression correlation extracted from biological experiments. Second, the experimental
constraints defined the setup of diverse leaded experiments (Figure 2.9). Given a
perturbation on the inputs and network components (such as an activation, an inhibition
or a knockout) the behaviors of the genes is captured. Thus, for each constraint, there is an
initial observation and a final observation. Combined the experimental constraints and the
ABN; the algorithm computes constrained ABNs (cABNs) that are ABNs consistent with
experimental constraints, encompassing all possible mechanisms that match the observed
system behavior (Figure 2.9). An asynchronous update strategy is employed to identify
the sequence of activation of each component. Thus, computed cABNs formulate the
required interactions to model the studied system. The set of consistent cABNs can be
enumerated, enabling the identification of diverse mechanisms. Additionally, the minimal
cABN can be highlighted to show interaction critical for the network. cABNs can also
be used to formulate predictions, allowing researchers to determine if new hypotheses are
supported by the cABNs. Once these predictions are tested experimentally, they can be

incorporated into the set of experimental constraints and potentially refining the cABNs.

In Dunn et al. [68], the authors applied RE:IN to derive Boolean networks models of
the naive pluripotency maintenance and induction. The aim was to study mouse post-
implantation epiblast stem cells (EpiSCs) and their resetting into a pluripotent state,
which gives EpiSCs the capacity to differentiate into other cell types. The inferred Boolean
networks captured behaviors of transcription factors and gene activation trajectories
during this process. They generated 10,000 models and identified the “minimal model”

which is the cABN having the fewest interactions and constrained with experimental
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Figure 2.9 — RE:IN methodology.
Combining an abstract Boolean network (ABN) and experimental constraints, constrained ABN (cABN)
are inferred. These cABNs formulate the required interactions and the minimal cABN can be generated.
Figure adapted from Yordanov et al. [67].

- -

gene perturbation data, to model the dynamic behavior of cell differentiation. Moreover,
the authors used cABNs to formulate predictions on the constraints needed to reset
EpiSCs into a pluripotent cell state. They identify specific constraints, such as activation,

inhibition or knockdown of transcription factors, to enable EpiSCs to reset.

SCNS, a toolkit for synthesizing single-cell networks SCNS (Single-Cell Network
Synthesis) [69] toolkit generates computational regulatory network models. Given single-
cell binarized expression states, it learns Boolean networks (BNs) exhibiting the on/off
patterns of transcription factors (TFs) [69]. The model learning process is framed as a
Boolean satisfiability problem encoded in SMT (Satisfiability Modulo Theories). Notably,
the network construction solely relies on single-gene transition deduced from the single-cell
data.

SCNS begins with dimension reduction based on the concept of diffusion distance,
constructing a diffusion map (Figure 2.10A). Briefly, this algorithm calculates the
similarities between cells based on their gene expression patterns. The resulting low-

dimensional map reflects cell similarities and represents the developmental trajectories
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over time. Similarly to pseudotime, the diffusion map provides a cell ordering in
developmental time, enabling identification of potential bifurcations. Afterwards, gene
expression is binarized, forming binary states. A state graph is built from binarized single-
cell data (Figure 2.10B). In this graph, states are connected when the expression of one
gene differs between two states, resulting in a connected state transition graph comprising
single-gene transitions. This graph represents the possible developmental expression state
changes and serves as the foundation for BNs learning. Since the direction between two
states in the graph is not predefined, the algorithm determines the orientation of edges
within the transition graph by using the order of cells derived by the diffusion map
analysis. For that, users specify the initial and final states, which correspond to the “root”
stage and the “leaves” of the differentiation process, respectively. Thus, for each gene,
Boolean update functions consistent with all state transitions are determined. Finally,
the resulting networks form the BNs that model the studied system (Figure 2.10C).

In Moignard et al. [69], the authors applied SCNS to analyze the early blood cellular
differentiation with the goal of better understanding the mechanisms involved in cell
progression. They focus on approximately 40 transcription factors involved in the blood
cell differentiation and consider the expression of these genes in 3,934 cells. A diffusion
map was computed, enabling the identification of developmental trajectories and the
ordering of cells. Subsequently, they compute the transition graph comprising around
1,500 expressions states, which was used to infer Boolean networks. From the various
combinations of rules, more than 46,000 Boolean models were generated. The study not
only identified previously known transcription factor interactions but also discovered
the roles of two transcription factors through predictions, which were then confirmed

experimentally.

2.5.2 Discussion

We previously presented three methods for modeling scRNAseq data. The first method,
BoNesis, synthesizes ensembles of Boolean networks. Inferred BNs dynamically model a
biological system and are particularly suited for studying cellular differentiation. Using
these logical models, researchers can gain a global overview of the studied system.
In addition, BoNesis handles observations by selecting neighboring cells at key events
in pseudotime trajectories, with the average sign in this cell group determining the
observation sign.

The second method, RE:IN, also uses BNs to model biological systems, such as cellular
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Figure 2.10 — SCNS methodology.
(A) Diffusion map identifying developmental trajectories.
(B) State graph of 1,448 expression states.
(C) Boolean network model. Red edges represent activation, while blue edges represent inhibition. Dark
squares represent “AND” gates, while circle indicate “OR” gates.
Figure adapted from Moignard et al. [69].

decision-making. The method requires a prior knowledge and experimental constraints,
which are biological observations from experiments, such as activation of a component.
These inputs enable the synthesis of set of logical models, which can make predictions

and suggest new experiments to refine the experimental constraints.

The third method, SCNS, models cell differentiation by using diffusion maps to order
cells in time and learn BNs. The method generates state transition graphs enabling the
identification of precise transcriptional regulatory mechanisms involved in the studied

system.

We compare these methods in Table 2.2. All three methods require binarized gene

expression values, which might lead to a strong abstraction, potentially missing interesting

29



Chapter 2 — State of the art in single-cell transcriptomic data modeling

Table 2.2 — Comparison of modeling methods.

Prior Cell Cellular Exhaustive
Method Input content Input size . dynamic R Validation
knowledge heterogeneity . enumeration
evolution
e scRNAseq e Potential gene
. e PKN e ~ 1,000 genes interactions
BoNesis [61] e Dynamical e = 600 cells e Dynamical X v X X
properties constraints
e ABN e Potential gene
. s e =~ 20 genes interactions
RE:IN [66] ¢ §§ZZ?523222 e = 30 perturbations | e TFs implicated 4 X X v
in the system
. o Single-cell e ~ 40 genes e TFs implicated
Q *
SCONS [69] transcriptomics | e = 4,000 cells in the system v v v v

* Thanks to experimental perturbations.

information. However, this data processing is widely used in systems biology and has
proven useful [22]. BoNesis and SCNS require single-cell transcriptomic data, whereas
RE:IN uses perturbation observations as input. Additionally, BoNesis and SCNS need
cell ordering derived from pseudotime trajectories. All the methods necessitate prior
knowledge. For BoNesis and RE:IN, this includes a set of potential gene interactions,
which define the interactions used to infer BNs and take the form of a PKN and an ABN,
respectively. BoNesis also requires dynamical constraints based on the knowledge of the
studied system. Moreover, SCNS and RE:IN need a set of transcription factors (TFs)
implicated in the studied system. Regarding input size, RE:IN handles small datasets
(approximately 20 genes and 30 experimental perturbations). SCNS can process a similar
number of genes but manages a much larger number of cells (around 4, 000). BoNesis can
accommodate a larger number of genes, around 1,000. Furthermore, BoNesis employs
ASP, while the two other methods use SMT.

All three methods aim to learn optimal models that satisfy the given constraints. SCNS
focuses on a small evolutionary window of the studied system, enabling it to manage cell
heterogeneity, through the construction of a stage graph. We define cell heterogeneity as
the consideration of diverse gene expression states across all cells. RE:IN cannot handle
cellular dynamic evolution, while the two others methods can model the cell differentiation
dynamics of the system. In addition, all the three methods infer families of Boolean
network models. These model enumerations are exhaustive in theory, but depending on
the total search space and the constraints imposed, it is not always feasible. This is the case
of BoNesis and RE:IN, where only a subset of BNs was used (1,000 for BoNesis [63] and
10,000 for RE:IN [68]). SCNS provided a complete enumeration, sometimes resulting in
very large sets (46,646 BNs [69]). When no experimental validation data can be obtained,
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it is difficult to prioritize which models to favor. Even when punctual (non-exhaustive)
experimental data is available, it is important to develop metrics that identify robust BNs
compared to other possible BNs that satisfy the constraints. This robustness study was

presented in our work, where millions of BNs were possible to be enumerated.

Let us put the three methods into perspective with the thesis, which aims to
understand and model mechanisms involved in the human preimplantation embryo
development. Our goal is to describe underlying gene regulatory mechanisms implicated
in the developmental stages. In addition, within the context of the research project, the
global objective is to define the dynamic processes involved in the cellular differentiation,
leading to the three cell fates: epiblast, primitive endoderm and trophectoderm.

Given this context, the BoNesis method’s approach of analyzing subsets of cells might
exclude some cells of the same type, potentially omitting valuable gene expression data.
Additionally, calculating the observation sign from an average of cells might dilute unique
gene expression patterns, potentially missing interesting behaviors.

The RE:IN method’s input requirements are restrictive, relying on constraints from
biological experiments involving activation or inhibition. In the context of human embryos,
these system perturbations are infeasible due to various factors, including legal ones.

The inference of BNs from the transition graph used by SCNS is highly complex due
to combinatorial possibilities involved. For small datasets, such as the one containing
around 40 genes in Moignard et al. [69], computation remains feasible via an SMT solver.
However, SCNS cannot handle larger datasets, making it impractical for our project due
to the abundance of data we have (around 1,700 cells and 20,000 genes; see Chapter 3

for more details).

Ultimately, these three tools, though very interesting to model embryonic development
data, have some characteristics we aimed to approach differently in this work. BoNesis
remains interesting for addressing the second objective of the research project, which aims
to understand the dynamic processes of the system. However, in this thesis, we focus on the
modeling of gene regulatory mechanisms involved in the human embryonic development.
To achieve this, we implement a method that provide models of regulatory mechanisms
in developmental stages, allowing us to better understand how cells transition from one
stage to another and commit to specific cell fates. Additionally, our method offers an
exhaustive enumeration and optimality of models while accounting for cell heterogeneity

and redundancy. The inferred models are evaluated using a robustness metric, increasing
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our confidence in the obtained results.
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CHAPTER 3

BACKGROUND

“Logic will get you from A to B. Imagination will take you everywhere.”
— Albert Einstein (1879-1955)

This chapter offers various definitions essential for understanding the
manuscript. It provides an overview of the data and introduces answer set
programming (ASP) through an explanation of the paradigm and a toy example.

Additionally, it presents some studies and tools we use in our modeling method.
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3.1 Definitions

3.1.1 Prior Knowledge Network

Definition 3.1 Interaction Graph (IG). An interaction graph G = (V, E,0) is a signed
and oriented graph, where V= {vy,...,v,} is the set of nodes, E €V XV is the set of
directed edges, and o € E X {+1, =1} is the signs of the edges.

Figure 3.1 presents an example of an IG, composed of 6 nodes and 8 edges. In the
context of gene regulation, a node represents a gene (or biological entity), and an edge
denoted by j — i indicates that the change in activity level of the gene j influences the
activity level of gene i. Edges j — i are labeled with a sign, where +1 (resp. —1) indicates
that j tends to increase (resp. decrease) the level of i. We represent an increasing or
activation as a classical arrow in green (—, Figure 3.1) whereas decreasing or inhibition

is represented by a red “T-arrow” (—, Figure 3.1).

Definition 3.2 Prior Knowledge Network (PKN). A Prior Knowledge Network is an IG
derived from prior regqulatory knowledge, where nodes correspond to biological entities
(in our case, genes), and edges represent causal or functional relationships between

these entities.

Within a PKN, we define three types of genes:
e the input gene, which is a gene without any predecessor;
e the intermediate gene, with predecessor(s) and successor(s);

e the readout gene, without any successor.
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Q\ | /C

Figure 3.1 — Example of an interaction graph.
This interaction graph comprises 6 nodes and 8 edges. We denote 3 different nodes: inputs in green,
intermediates in orange and readouts in blue. Two types of interactions between nodes are present:
positive interactions or activations represented by a green arrow, and negative interactions or inhibitions
represented by a red “T-arrow”.

Input and intermediate genes correspond to the part of the PKN that can be stimulated
(externally or internally), they can also be referred to as system entries. While readouts
are the part of the system that can be observed, they can be referred to as the system
output. Referring to Figure 3.1, we observe 4 inputs in green, 2 intermediates in orange

and 1 readout in blue, along with 3 activations and 3 inhibitions.

3.1.2 Boolean Network

Definition 3.3 Boolean Network (BN). A Boolean network B, of dimension n is defined
as B = (N, F) where:
o N ={vy,...,0,} is a finite set of nodes (variables or genes);

o ' = {fi,...,fu} is a set of Boolean functions f; : B" — B, with B = {0, 1},

describing the evolution of variable v;.

Each Boolean function f; defines the state of a variable v; based on the states of other
variables. Boolean expressions are used to describe the values of these Boolean functions.
These expressions comprise logical components, including “AND” (A), “OR” (Vv), and
“NOT” (=), along with binary Boolean variables that can take values of 0 or 1. They

can be represented in either conjunctive normal form (CNF) or disjunctive normal form

(DNF).
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A CNF is a conjunction of clauses, where each clause is a disjunction of Boolean
variables or their negation. Similarly, a DNF is a disjunction of clauses, where each clause
is a conjunction of Boolean variables or their negation. Notably, any CNF' can be expressed
as a DNF, and vice versa. For instance, a CNF C, where C = (=x, V z.) A (23 V 1,),
such that (-z,Vz.) and (-z,V x.) are disjunctions, can be written as a DNF
D = (=x4 A xyp) V 2.

In this manuscript, DNFs are used. Additionally, Boolean functions can be graphically
represented using a directed hypergraph, where nodes depict Boolean variables and
directed hyperedges describe logical interactions.

In summary, a Boolean network uses Boolean functions to model the interactions and
state transitions of variables or genes, with each function defined by a Boolean expression

composed of logical operators and binary variables.

Figure 3.2A presents a BN B, of dimension 4, meaning that it is composed of 4 Boolean
functions associated to a network’s component. Here, we define x, the vector comprising
all the studied components: z = {x,, 7, 7., T4}

For instance, the function associated to the first component a is determined by its
own activation. Thus, f,(z) = 1 if and only if, in input, the component a is set to 1.
Biologically, this local function can be seen as an auto-activation of the component a.
Furthermore, the second component, b, is associated with component a, particularly by

its negation. Unlike f,(x), f,(x) = 1 if and only if, in input, the component a is set to 0.

A B .
2(2)——(v)
“\

fa(SC) = Tq “ \//
fo(x) = x4 - /
felx) =2a4Va . /
fd(x) - (_‘xb /\bxc) V 1z, \\ i\/

Figure 3.2 — Example of a Boolean network and its hypergraph

representation.
(A) Example of Boolean network B of dimension 4.
(B) Directed hypergraph representation of the BN B. Positive edges are represented in classical green
arrows (—), while negative edges are represented in red “T-arrows” (—). Logical interactions are
represented with a v for a “OR” logic gate, whereas “AND” one are represented with a dark node,
denoted with a A.
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In Figure 3.2B, we depict the directed hypergraph of the BN B shown in Figure 3.2A.
The four nodes in the hypergraph represent Boolean variables, each capable of taking
values of either 0 or 1. Directed hyperedges, denoting interactions, can be either positive,
indicated by an arrow (—), or negative, represented by a “T-arrow” (—). Dark nodes
() denote a A (“AND?”) interactions or gates, while the absence of dark node represents
a vV (“OR”) interaction.

For the remainder of the manuscript, BNs will be represented using hypergraphes.
Furthermore, the logical symbols (A and V) will be omitted to streamline the visualization.
If there is no dark node between interactions (signifying an “AND”), an “OR” interaction

will be assumed.

In this first section, we defined the essential concepts required to understand our

implemented method. We will now present the single-cell data used in our method.

3.2 Single-cell transcriptomic data from human

embryos

3.2.1 Composition of the data

Throughout this thesis, we exploit scRNAseq data obtained from stage-matched
human embryos, leveraging the dataset initially compiled by Petropoulos et al. [70] and
subsequently refined in Meistermann et al. [13]. This dataset encompasses the expression
profiles of 34,054 genes across 1,496 cells derived from 88 stage-matched human embryos.
Notably, scRNAseq data often exhibits zero-inflation (see Section 2.2.3), a phenomenon

we encounter in our dataset, where 63% of the values are zeros.

3.2.2 Data analysis

The study Meistermann et al. [13] delineates cell fate decisions during the early
human embryo development. Three principal analyses were conducted to unravel cell fate

transcriptional signatures and the hierarchy of events occurring during the development.
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UMAP clusters WGCNA' (weighted gene co-expression network analysis) [71] was
employed to identify gene expression signatures associated with distinct developmental
stages and lineages. This method identifies module eigengenes representing a linear
combination of gene subset activation or repression. These modules are then used to
produce a precise map of the transcriptome identity, via dimensionality reduction using the
UMAP (uniform manifold approximation and projection) approach [39]. Cells are grouped
(unsupervisedly) into 8 major clusters indicative of a lineage or a stage (Figure 3.3A).

Other clusters are qualified as “undefined” or “intermediate”.

Pseudotime Single-cell trajectories were reconstructed using Monocle 2 software [48].
Cells are ordered along a pseudotime, placing them along a trajectory corresponding to a
biological process such as cell differentiation by leveraging the asynchronous progression
of these processes in individual cells. This method enables the identification of cell fate
decisions and their regulated genes using machine learning techniques. Figure 3.3B depicts
the inferred pseudotime and the cell hierarchy, facilitating the understanding of the
temporal evolution of cells during the human preimplantation embryonic development.
This analysis reveals two specifications leading to three cell fates: epiblast (EPI), primitive
endoderm (PrE) and trophectoderm (TE).

Lineage signature By combining gene module expression with each cell cluster
obtained with the UMAP, 8 modules of genes can be identified (Figure 3.3C). The heatmap
reveals module-specific behaviors, providing insights into the potential roles of genes
within each module. Some modules are related to specific lineages, such as the GATA4
module for PrE, the GATA2 for (early, medium and late) TE and the NR2F2 module for
late TE. Conversely, some modules reflect overall change in embryo development, such as
DUXA module, which is associated with zygotic genome activation (i.e., the initiation of
gene expression after fertilization). Moreover, authors identify a list of 438 transcription
factors (TFs) implicated in these 8 modules, where some of them are indicated on the
right of the heatmap of the Figure 3.3C. The complete list of TFs can be retrieved in
Appendix D.

1. A technical specification sheet of WGCNA is available in Appendix C.
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Figure 3.3 — Single-cell transcriptomic data representation.

(A) Dimension reduction (UMAP) of WGCNA module eigengenes, colored by density-based clusters.
Small dots indicate a minor cluster composed by the intermediate transcriptome. Medium TE and late
TE were segregated by additional k-means clustering based on NR2F2 and GATA2 module eigengenes
(see Meistermann et al. [13] for more details).

(B) Projection of density-based clusters from (A) on the pseudotime.

(continued on next page.)
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3.3 Answer set programming

3.3.1 Presentation of the paradigm

Logic programming (LP) is a programming paradigm based on formal logic [72]. LP
defines applications using a set of facts, logic rules and constraints. LP allows programmers
to write programs and solve them [73]. Two interpretations of a logic program can be done:
(i) the declarative interpretation, which refers to what is being computed and (%) the
procedural interpretation which explains how the computation takes place [73]. Answer
set programming (ASP) [74] is a logic programming paradigm adapted to combinatorial
search problems, primarily NP-hard search problems [75]. ASP is based on the stable
model semantics of LP. The aim is to use programs computing and searching stable
models, respecting the rules and constraints given by the program [76].

ASP can be applied to several areas of science. For example, Nogueira et al. [77]
developed a system able to solving some planning and diagnostic tasks related to the
operation of Space Shuttle. In music composition, an automated system implemented in
ASP can compose rhythmic, melodic and harmonic music, serves as a computer-aided
composition tool and diagnoses errors in human compositions [78]. ASP is also heavily
used in biology and systems biology. Brooks et al. [79] have inferred and reconstructed a
phylogeny for a set of taxa using ASP. ASP is particularly used in systems biology, for
instance, for Genome-Scale Metabolic Network (GSMN) reconstructions [80], or metabolic
network completion [81]. Other studies use ASP to predict weighted unobserved nodes in

a regulatory network [7].

3.3.2 Basic ASP syntax

Term A term is the smallest block in ASP. It can be an integer, a constant, a string or a
variable. Constants and variables are distinguished by their initial letters, with constants

starting with lowercase letters, e.g., penguin and variables starting with uppercase letters,

(continued from previous page.)

(C) Expression heatmap of all genes related to WGCNA modules. Each row represents a WGCNA module,
and each column is a set of 50 cells drawn from a UMAP cluster (A). The height of each row represents
the number of genes in the corresponding WGCNA module following a log scale. For each module, a set
of genes belonging to the module is indicated on the right side of the heatmap.

Figure adapted from Meistermann et al. [13].
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e.g., X. A string is a sequence of characters enclosed in double quotes, e.g., "2.34". In

addition, the token _ stands for an anonymous variable.

Atom An atom is a block comprising two parts: the predicate and the arguments. For
example, birth place(casper,X) is an atom with the predicate birth_place, and 2
arguments: the constant capser and the variable X. We define the arity of predicate by
the number of arguments linked to the predicate within an atom, denoted as follows:
<predicate>/<arity>. For instance, birth_place will be denoted by birth_place/3.
Furthermore, a ground atom is an atom without any variable. birth place(casper,X)

is not a ground atom, while birth_place(casper,antartic) is a ground atom.

Rules, facts and constraints An ASP program consists of rules of the form:

ag + — A4,...,ay,n0t apyq,...,00t a,.
- . . y
head body
where, a,, ..., a, are atoms, the symbol : - can be interpreted as a “if” and the comma

(,) is a “and”. The not symbol denotes the (default) negation. Intuitively, a rule can
be expressed as: “the head is true if the body holds”. The particularity of ASP is that
the reasoning is closed world. In other words, an atom is considered false until proved
otherwise. Furthermore, diverse rule adaptions can be made.

A fact is a rule without body (n = 0) and is always true:

Generally, a fact represents knowledge.

A rule without a head (head = @) is a constraint:
i —q.

Therefore what is present in a constraint cannot be present in solutions.

ASP notations ASP allows the use of various notations to enrich programs:

e Comparison: Classical mathematical comparisons, such as = (equal), != (not
equal), < (less than), <= (less than or equal), > (greater than), >= (greater than

or equal), are available.
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Condition: The notation a(X) : b(X) means that all instances of a(X) are inferred

for which the corresponding instance b(X) appears.

e Choice rule: The notation n {a(X): b(X)} mis true if at least n and at most m
instances of a(X) (subject to b(X)) are satisfied. A choice rule can be used in the

body (acting as a constraint) or in the head (acting as a rule).

e Count: The expression N = {X: a(X)} counts the number of distinct X for which

a/1 predicate is true.

e Optimization: The notation #maximize{W: a(X)} (resp. #minimize{W: a(X)})

is used to maximize (resp. minimize) the sum of weights W subject to a(X).

e Display: The command #show a/1. displays all true a/1 predicates.

Further details on ASP notations can be found in the Potassco documentation 2.

Toy example In this section, we illustrate some concepts in a toy example
(Program 3.1).

First, consider the problem encoding in lines 3-6. Line 3 defines that a bird can fly
by default, unless negated (not neg_fly(X)). Here, the default negation takes on its full
meaning. Unless explicitly stated that a bird cannot fly using the predicate, it is assumed
that the bird can fly. Lines 4 and 5 establish that an eagle and a penguin, respectively, are
both birds. Line 6 introduces the neg_£1y/1 predicate, indicating that a penguin cannot
fly.

Next, the problem instance is specified in lines 8 and 9, which represent our knowledge
base. These lines state that ricky is an eagle and casper is a penguin. Consequently,
ricky is inferred to be a bird capable of flight, while casper is a bird without the ability
to fly.

Finally, lines 11 and 12 restrict the output to display only the bird/1 and fly/1
predicates. This selective display ensures that the results focus on the relevant aspects of

the problem encoding.

It is important to note that the order of rules and constraints in ASP does not impact

the resolution of the program.

2. https://potassco.org
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O© 00 J O T = W N =

—_ = =
N = O

/. This 4s a comment in ASP

/i Problem encoding

fly(X) :- bird(X), not neg fly(X).

bird(X) :- eagle(X).
bird(X) :- penguin(X).
neg fly(X) :- penguin(X).
/i Problem instance
eagle(ricky).
penguin(casper) .

/i Display

#show bird/1.

#show fly/1.

Program 3.1 — ASP program toy example.

Upon resolving this program, we obtain the results shown in Figure 3.4. We observe a

single solution containing two bird/1 predicates and one £1ly/1 predicate. As expected,

ricky and casper are identified as birds (bird(ricky) and bird(casper)), with ricky

being capable of flight (fly(ricky)). The program and its results can be accessed and

regenerated through the provided notebook link in footnote ”.

clingo version 5.5.0
Reading from stdin

Solving...

Answer: 1

bird{casper) bird{ricky)} fly(ricky)

SATISFIAELE

Models |

Calls 11

Time : B.001s (Solving: ©.080s 1st Model: 8.88s Unsat: 0.80s)
CPU Time : 0.001s

Figure 3.4 — Obtained results for Program 3.1.

3. https://mybinder.org/v2/gh/mathieubolteau/Bolteau_PhD_Thesis_Supplement/master - see
Notebook Illustration_3.1.ipynb. The web page may take a few minutes to load.
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3.3.3 Solving process

ASP allows programmers to solve problems by returning one or more solutions that
satisfy the problem’s description. The computation process in ASP involves two key stages:

grounding and solving (Figure 3.5) [82, 83].

1. Grounding. In this initial step, all constraints and rules are instantiated with
specific data (facts). This process eliminates variables within the rules and
constraints, resulting in a grounded program, comprising only ground atoms. A
dedicated program called a grounder generates a finite propositional representation
of the original ASP program. This essentially translates the program into a form

that can be efficiently solved by specialized algorithms.

2. Solving. Following grounding, a solver is employed to generate stable models given a

grounded program. These stable models satisfy all program rules and optimizations.

Ultimately, the solutions are presented to users, each representing a possible interpretation

of the problem based on the stable models.

Problem Solution
Modeling Interpreting
Logic Grounder Solver Stable
Program Models
Solving

Figure 3.5 — ASP problem resolution process.
A problem is modeled in the syntax of logic programs. Then, ASP process is decomposed in two steps.
First, a grounder generates a finite propositional representation of the input program. Secondly, the solver
computes the stable models. Finally, the solution is given.
Figure from Gebser et al. [84].

Several grounders and solvers exist [85], such as Lparse [86], GIDL [87] and
SModels [88], ASSAT [89], respectively. In this thesis, the Potsdam Answer Set Solving
Collection (Potassco) and more especially, the grounder Gringo [90] and the solver

Clasp [91] are used.
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3.3.4 ASP program example

In this section, we present an ASP program example introducing possible

representation of cells and gene expression in ASP (Program 3.2). The objective of this

program is to select potential perturbations for two classes.

1
2
3
4
)
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

cell(cl). 7 c1 is a cell

cell(c2).

cell(c3).

class(early TE). /% early_TE is a class
class(medium_TE).

class(late TE).

be_part(cl,early _TE). 7 c1 belongs to early TE class
be_part(c2,medium_TE).

be_part(c3,late_TE).

gene(gl). 7 g1 is a gene

gene (g2) .

expr(cl,gl,0). 7 g1 gene is expressed at O in cl cell
expr(cl,g2,0).

expr(c2,gl,0).

expr(c2,g2,1).

expr(c3,gl,1).

expr(c3,g2,1).

pert(C,G,S,CL) :- expr(C,G,S), cell(C), gene(G), be_part(C,CL).
{sel_pert(C,G,S,CL) : pert(C,G,S,CL)}.

:- sel _pert(_, , ,early TE).

#maximize{1,C,G: sel pert(C,G, , ), pert(C,G,_ , )}.
#show sel pert/4.

Program 3.2 — ASP program of pseudo-perturbation generation.

The ASP program delineates knowledge through facts (lines 1-17). For instance,

the expr(cl,gl,0) predicate on line 12 signifies that in cell c¢1, the gene gl exhibits

an expression value of 0. Line 18 introduces a rule defining a pert/4 predicate,

modeling experimental data, where gene G demonstrates an expression value S in cell C,

associated with class C'L. Line 19 selects a subset of pert/4 predicates using sel_pert/4,
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representing the chosen perturbations. This construct, known as choice rule, is central in
ASP modeling, generating potential combinations of candidate solutions. These solutions
are typically filtered using constraints. For instance, line 20 restricts the solution candidate
sel pert/4 from being linked with the early TF class. These solutions of this program
are rendered as a set of sel_pert/4 predicates. Each solution validates all program rules.
At this point, respecting the rules and constraints of lines 1 —20, 16 solutions are possible,
representing all subsets for 2 cells associated with 2 genes. Mathematically, we have
(2%)* = 16 solutions. The first part (2°) represents the two cells, ¢2 and ¢3, that can

be present or absent in the solution, resulting in 4 solutions:

No cells selected: {} (empty set, @).

Cell c2 only selected: {sel_pert(c2,G, ,medium TE)}.

Cell ¢3 only selected: {sel_pert(c3,G, ,late TE)}.

Both cells ¢2 and c3 selected: {sel_pert(c2,G,_ ,medium TE)}, {sel _pert(c3,
G, ,late TE)}.

Furthermore, each sel pert/4 predicate involves gene G. Since two genes, gl and
g2, are possible, we add a second exponent (2) to the solution count. This brings
the total number of solutions to 4> = 16. However, our goal is to identify all
possible perturbations for the cells present in medium and late TE. To achieve
this, we aim to maximize the number of possible perturbations. Line 21 searches to
maximize the sel_pert/4 predicate with the association of cell C' and gene G. Behind
this #maximize statement, a counting of predicates, corresponding to associations, is
made by the solver. Finally, line 22 presents the display of the solution(s) of this
program, focusing solely on the sel pert/4 predicates. Thus, we obtain as a result
one solution that maximizes the number of sel pert predicates having different
constant terms : {sel_pert(c2,gl,0,medium TE), sel pert(c3,gl,1,late _TE),
sel_pert(c2,g2,1,medium_TE), sel_pert(c3,g2,1,late_TE)}.

To illustrate our purpose, we invite the reader to run this ASP program following
the link in foonote®. In the notebook, run the first cell (corresponding to the first
21 lines) to obtain the 16 solutions. By running the second cell, the optimization
will be performed to obtain the maximal number of selpert/4 predicates. In

Figure 3.6, we present a screenshot of the second cell and its output. The solver

4. https://mybinder.org/v2/gh/mathieubolteau/BolteauPhD_Thesis_ Supplement/master - see
Notebook I1lustration_3.2.ipynb. The web page may take a few minutes to load.
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3.8. Answer set programming

gives OPTIMUM FOUND meaning that an optimal solution is found. This solution
is the last found, here: sel_pert(c2,gl,0,medium_TE) sel_pert(c3,gl,1,late_TE)

sel pert(c2,g2,1,medium TE) sel pert(c3,g2,1,late_TE). This solution is the one

comprising the maximal number of sel_pert/4 predicates.

The

%%sclinge 0

cellicl)

cellic2)

cell{c3)

class{early_TE).

class(medium_TE)

class(late TE).

be part(cl,early TE}

be part(c2,medium TE).
be_part(c3,late TE).

gene(gl).

gene(g2).

expricl,gl,0)

expricl,g2,0)

expric2,gl,n)

expric2,g2,1)

expric3,qgl,1)

expric3,g2,1)

pert(C,G,S,CL} :- expr(C,G,5), cell(C), gene(G), be_part(C,CL).
{sel_pert(C,G,5,CL) : pert(C,G,5,CL)}}.

#maximize{1,C,G: sel pert(C,G, , ), pert(C,G, , }}.
#show sel pert/4.

clingo version 5.5.0
Reading from stdin
Solving...

Answer: 1

Optimization: @

Answer: 2

sel_pertic3,gl,1,late TE)

Optimization: -1

Answer: 3

sel_pert(c3,gl,1,late TE) sel pert(c2,92,1,medium TE)

Optimization: -2

Answer: 4

sel_pert(c3,gl,1,late TE) sel pert{c2,92,1,medium TE) sel pert(c3,g2,1,late TE)
Optimization: -3

Answer: 5

sel_pert{c2,gl,®,medium _TE} sel_pert(c3,gl,1,late TE] sel _pertic2,g2,1,medium_TE) sel_pert{c3,g2,1,late_TE)
Optimization: -4

OPTIMUM FOUND

Models : 5
Optimum : yes
Optimization : -4
Calls 01
Time 1 0.002s (Solving: ©.00s5 1st Model: 0.06s Unsat: 0.80s)
CPU Time : 0.802s

Figure 3.6 — Screenshot of the Program 3.2 and its execution.
Program 3.2 can  be  retrieved and run using  the following link:

https://mybinder.org/v2/gh/mathieubolteau/Bolteau_ PhD_ Thesis_ Supplement/master. To
regenerate this result, please Run the second cell of the notebook Illustration_3.2.ipynb.

47


https://mybinder.org/v2/gh/mathieubolteau/Bolteau_PhD_Thesis_Supplement/master

Chapter 3 — Background

3.4 Tools used in this thesis

3.4.1 pyBRAvo: constructing interaction graphs from public

databases

pyBRAvo (python Biological netwoRk Assembly) is a computational framework
designed to reconstruct human multi-source and multi-pathway gene regulatory networks
(GRNs) and signalling networks (SNs) [92]. This tool addresses three primary challenges:
(1) integrating multiple biological data sources, (i) automating network reconstruction

and (7ii) leveraging biological semantic models to represent causal biological flows.

3.4.1.1 Pathway Commons

pyBRAvo utilizes Pathway Commons (PC) [93], a large collection that aggregates
publicly available biological pathway and molecular interaction databases. PC integrates
data from 22 databases, such as Kyoto Encyclopedia of Genes and Genomes (KEGG)
Pathway [94], Reactome [95], Pathway Interaction Database (PID) [96], among others.
This comprehensive integration encompasses over 5, 000 pathways and more than 2 million
interactions. PC organizes biological data from these databases into a knowledge graph
using linked data principles. Leveraging the semantic web, particularly the SPARQL query

language, allows efficient querying of this extensive graph to retrieve specific information.

3.4.1.2 Network reconstruction

pyBRAvo follows the algorithm outlined in Figure 3.7 to reconstruct a network.
Initially, the tool takes a list of genes or proteins as input. This list undergoes three
preprocessing steps to decompose complexes, add synonyms, and expand suffixes found
in databases. Subsequently, pyBRAvo generates a query to send to PC instructing it to
identify predecessors directly linked in biological databases to entities in the provided
list. The generated query is executed on PC, and the resulting entities are added to the
list. This process iterates until no new controllers are found (i.e., no predecessors are
identified), or the maximum exploration depth has been reached. pyBRAvo outputs an
interaction graph suitable for computational modeling. The provenance database of each
entity present in the network is also outputted by the software. Additionally, a powerful
advantage of this tool is the reconstruction of an oriented and signed graph. In others

words, reconstructed networks reflect the direction of the interaction between entities, as
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well as the type of interaction, which can be activation, inhibition, or participation in a

protein complex.

Target genes or Regulation or
proteins signaling option

[ No new controllers ]

Complex decomposi-
tion

e e Query generation

regulation signaling
Synonym expansion graph pattern graph pattern

.

Query execution

Suffix label expansion

influence biochemical
graph reaction graph

vy

Figure 3.7 — Network reconstruction algorithm of pyBR Avo.
Given a list of genes or proteins, the entities are expanded through three optional steps. A query is
then sent to Pathway Commons to identify predecessors of the genes or proteins of the list. The newly
identified entities are added to the list and the graph is reconstructed. The querying process continues
until no more predecessors are found or the maximum exploration depth is reached. Finally, pyBRAvo
generates the reconstructed interaction graph.
Figure from Lefebure et al. [92].

3.4.1.3 Parameters of pyBRAvo

As explained previously, pyBRAvo takes as input a list of entities, genes or proteins,
depending on the desired output network (GRN or SN). The tool enables querying
regulatory interactions and signaling pathways, which are the primary parameters of the

software. The preprocessing steps outlined in the previous section are optional and can
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be called using appropriate parameters. Additionally, users have the option to exclude
certain databases if deemed irrelevant. Finally, users can set a maximum exploration
depth in order to stop the recursive querying process. This last parameter is crucial for
determining the depth of prior knowledge we aim to extract: the greater the depth, the

more extensive the mechanisms that will be uncovered.

3.4.2 Caspo: learning Boolean models
3.4.2.1 Caspo’s workflow

Caspo (Cell ASP Optimizer) [97-99] is an open-source software to learn Boolean
networks modeling signal transduction of a biological system. This Python package is
designed to construct ASP programs and leverage an ASP solver to execute and find
solutions for these programs. The objective of this software is to infer logical models
allowing the identification of mechanisms underlying signal transduction characteristics
and generating reliable hypotheses. Three main applications, shown in Figure 3.8, can
be addressed by Caspo: (i) learning BNs, (i) classify these BNs and (%ii7) design new

experiments to better discriminate the learned BNs.

Prior Knowledge Network

oa gt

Phosphoproteomics dataset g
_l_ el RGN Resdous | nE
[ [ €9
[ [ 05
B 0 ] qEJt
/]
eeeee » b @& S 58
\wsw S
(]
MODELING =S
Discriminatory experiments

LEARN DESIGN™

Logical networks
3 CLASSIFY I/0 behaviors

Figure 3.8 — Workflow of Caspo software.
The workflow consists of a loop made of three main modeling steps: () learn a family of logical networks
from a prior knowledge network and a phosphoproteomics dataset; (i) classify networks w.r.t. to their
input-output (I-O) behaviors; and (7i) design new experiments to discriminate all I-O behaviors.
Figure adapted from Videla et al. [99].
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3.4.2.2 Inputs of the method

Prior knowledge network, a signaling network The foundation of the method
lies in prior knowledge, which comprises signal transduction described as a set of causal
interactions between proteins. This information represents the biological knowledge about
the studied system modeled and can be represented as a signed and directed graph, called

the Prior Knowledge Network (PKN). In this graph, three types of nodes are distinguished:
1. stimuli (green nodes): proteins that can be stimulated;
2. inhibitors (red nodes): proteins that can be inhibited;

3. readouts (blue nodes): output proteins where activity is observed after perturbations

of the two previous entities.

Experimental design composed of phosphoproteomics data To better
understand the studied problem, diverse phosphoproteomics experiments are conducted.
The system is composed of proteins that can be stimulated and/or inhibited. Scientists
explore the repercussions of these perturbations on the system through the activity
measurement of proteins called readouts [100]. This constitutes what we refer to as
an ezperimental design, composed of (i) perturbations, i.e. stimulation or inhibition of
certain proteins, and (7i) readout protein observations. An experimental design can be
represented as shown in Figure 3.9, containing n experimental conditions where different
combinations of stimuli and/or inhibitions are tested, and their impact on m readouts is
observed. Perturbations are represented by a 1 for stimulus and a 0 for inhibition, thus
considering perturbations as binarized values. Readout measurements, 6; ; € [0, 1], denote
the observed activity of a protein ;7 under the experimental condition i, where 0 < i < n

and 0 < j < m. These observations consist of normalized values between [0,1].

m
r A N
0 1 04 0.1 09
0 1 0 02 0.1 06

#3

0
nil
o HEEE o5 o5 o2

Figure 3.9 — Example of an experimental design.
Three experiments are observed, each comprising 2 stimuli, 2 inhibitors and 3 readouts. Perturbations
(stimuli and inhibitors) are binarized values whereas readouts are normalized values between [0, 1].
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3.4.2.3 Modeling steps

Learning Boolean networks Given a PKN, representing all possible interactions
between proteins, and an experimental design, containing observation data, the objective
is to learn Boolean networks (BNs) consistent with the possible interactions and biological
observations [98, 99]. For example, it might be obvious that two nodes in the PKN have
positive effect on another node, but the graph alone cannot specify whether the target
node is active in the presence of either node or only when both are present. BNs that fit
observations and prior knowledge can be learned using Caspo, implemented in ASP. Caspo
defines rules and constraints to obtain an optimal BN comprising Boolean functions.
Given a learned BN denoted by B, for each experimental condition ¢, we can compute
the Boolean prediction p; ; € {0,1} of the state of protein j by using the logic formulas
described by B [97]. In addition, we define the size of a BN as the sum of the number of
logic gates of each node in the BN [97].

Learning the optimal BN involves two optimizations:

1. Minimization of the mean square error (MSE) to learn BNs with binarized predicted
values as close as possible to normalized observations regarding the readouts. The

minimization follows the Equation 3.1.

2. Minimization of the size of BN to explain the observations as simple as possible.
The size is determined by counting the number of logic gates arriving or regulating
the nodes within the BN.

3
3

MSE—

(3.1)

z] )
i=1 j=1

where n is the number of experiments, p;; € p, with p is the set of predicted readout
values, and 0,; € 0, with 0 is the set of observed readout values.

Beyond the single optimal BN identified, knowledge about the system can be further
enriched by leveraging suboptimal BNs. This is achieved by relaxing the two optimization
criteria. First, a tolerance level can be introduced for the Mean Squared Error (MSE).
This allows us to explore BNs with MSE values ranging from the optimal value up to a
user-defined maximum tolerance added to the optimal MSE. We call this criterion the
fitness__tolerance. Second, a tolerance level can also be introduced for the size of the BN.
This allows us to explore BNs with a number of nodes ranging from the optimal size up to

a user-defined maximum tolerance added to the optimal number of nodes. This criterion
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is called size tolerance. Additionally, a third parameter could be considered in the BN
learning: the length. This value restricts the number of incoming interactions in an “AND”
logical gate. Ultimately, all these learned optimal and suboptimal BNs, considering the
parameter values, are combined to form a BN family, which collectively provides a more

comprehensive model of the system.

Let us illustrate the concepts with the toy example in Figure 3.10. Consider a PKN
(Figure 3.10A) comprising 6 nodes (with 3 inputs, 2 intermediates and 1 readout), and
8 edges. The hypergraph in Figure 3.10B, represents all plausible logical interactions
for the previous PKN. From this hypergraph, multiple BNs are possible to construct.
In Figure 3.10C, we present an arbitrary BN, derived from the PKN (i.e., pruning the
hypergraph), with its Boolean functions and its directed hypergraph representation.

Given a toy BN, illustrated in Figure 3.10C, and an experimental design composed of
two experiments (left table in Figure 3.10D), the expression value of the readout f can
be predicted. For instance, with a =1, 0=0,c=1,d =1 and e = 1 (experiment #1), f
is predicted to be 1. We can compare this prediction, with the observed value and thus
compute the MSE. All experiments of this toy example lead to a computed MSE equal
to 0.03365.

Classifying Boolean networks into input-output behaviors We can classify
members of a BN family with respect to their input-output predictions. Briefly, some
BNs can be regrouped together because they cannot be distinguished regarding their
input and output. In other words, these networks generate the same output (readout
prediction) for every possible Boolean value of input (stimuli and inhibitor), i.e., they
have the same input-output behavior [101]. Generally, the number of input-output (I-O)
behaviors is significantly less than the number of BNs, facilitating the analyses [97].

Design new discriminatory experiments BNs having the same I-O behavior cannot
be discriminated based on the available experimental design. However, Caspo provides a
functionality in order to design new experimental perturbations to distinguish BNs in a
same [-O behavior [101]. Given these new stimuli and inhibitors, wet lab experimental
could be lead to supply initial experimental observations and thus improve the learning

step. For more details on this subject, we refer the reader to Videla et al. [99].
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Figure 3.10 — Learning Boolean network illustration.
The green nodes represent the protein that can be experimentally stimulated. The orange nodes represent
species that can be inhibited. Blue nodes represent the readouts, i.e., the protein that can be measured.
Green and red arrows represent activations and in inhibitions respectively.
(A) Example of an interaction graph describing an imaginary prior knowledge network (PKN).
(B) Hypergraph expansion describing all plausible logical interactions for the PKN in (A).
(C) An arbitrary Boolean network (BN) B derived from the PKN in (A) (i.e. pruning the hypergraph in
(B)). On the top, are the logical functions of B. On the bottom, is the hypergraph representation of B.
(D) Computation of the MSE given a toy experimental design (left table) and the BN B in (C). Through
the BN B, the readout f is predicted to be 1 and 0, respectively, for the two experiments. The calculated
MSE is given by the equation on the right.

3.4.3 Using Caspo for modeling a response to a treatment

In this section, we introduce an original study which exploit Caspo to learn BNs and
discriminate the response of patients to a treatment. The implemented method served as

inspiration for the development of our approach in this thesis.
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3.4. Tools used in this thesis

3.4.3.1 Context of the study

The paper by Chebouba et al. [11] presents a method to discriminate the response of
acute myeloid leukemia (AML) patients to treatment. AML is a cancer affecting blood
cells, where only a quarter of patients survive beyond 5 years. The authors propose
studying proteomics data in order to classify the response of the treatment in two
classes: complete remission (CR) or primary resistant (PR). They suggest to use prior
information signaling networks from publicly available resources, combining to protein
levels of 191 patients (from CR and PR classes). The main objective is to derive (learn)
pseudo-perturbations for this type of patient dataset where real perturbations cannot be

captured, to apply Caspo for learning BNs specific to each patient class.

3.4.3.2 Workflow of the implemented method

The implemented method consists of 4 main steps. First, they reconstructed the prior
knowledge network (PKN) from public databases. Then, they used ASP to select proteins
and patients. The third step involved inferring Boolean networks (BNs) using Caspo [99].
A BN is inferred for each class, modeling it. Finally, they classify patients into one of the
two classes (CR and PR) based on the previously learned BNs. The general workflow of
the method is illustrated in Figure 3.11. More details about each step are provided in the

following sections.

Create the prior knowledge network The proteomics data consist of measurements
of 191 AML patients, with 231 protein levels measured. These patients are classified
into two classes: complete remission (CR) for those who had a good response to the
treatment, and primary resistant (PR) for those who did not respond well. To reconstruct
the PKN, the authors utilize the KEGG database [10], through a plugin that queries the
database and constructs the network (Figure 3.11a). Each node of the network represents
a gene, and edges represent interaction between these genes. They define three types of
nodes: stimuli, which are nodes without predecessors, readouts, which are nodes without

successor, and inhibitors, which are the other genes.

Selection of proteins and patients To use the Caspo framework, the proteomics
data need to be divided into entry and output measurements. The entry comprises a list

of perturbations containing stimulus and inhibitor information, while output consists of
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Figure 3.11 — Workflow of the method to discriminate the response

to a treatment.

(a) PKN reconstruction. Using the proteins present in the dataset as input, KEGG database where

queried to construct the PKN.

(b) Protein and patient selection. k proteins are selected from the dataset based on pairs of patients with

identical values in these proteins but belonging to different response classes.

(c) Boolean network (BN) learning. BNs are generated for response classes CR-PR using datasets from

step (b).

(d) Classification. Unknown patient datasets are classified using the learned logic models.

Figure from Chebouba et al. [11].

the readout observations. Recall that the objective of Caspo is to learn BNs answering to

the entry-output relation.
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The authors preprocess proteomic data by discretizing the proteins corresponding in
the PKN to stimuli and inhibitors, while readout protein are normalized between [0, 1]
(Figure 3.11b). They design an ASP program in order to select proteins and patients

according to specific rules:
1. Select k proteins from all possible combinations of stimuli and inhibitors.

2. Select pairs of patients from each class (CR and PR) for which the k selected proteins

have the same values.
3. Maximize the number of pairs of patients.
4. Maximize the difference of readout proteins of the selected pairs of patients.

The ASP program allows constructing two experimental designs, each specific to a class,
where they share the same entry (stimuli and inhibitors), but have a different output
(readout values). For more details about this method, readers can refer to Chebouba et
al. [11].

Boolean networks learning Combining the previously reconstructed PKN and the
experimental designs, the authors use Caspo to learn BNs (Figure 3.11¢). One BN family
is inferred for each class (CR and PR). These two BN families represent logic models

composed of signaling interactions, specific to each class.

Classification of patients Finally, they suggest a classification step to predict the
response to treatment for new patients using the previously learned BNs (Figure 3.11d).
Given a dataset from a new patient, one can predict the readout protein value through the
two families of learned BNs. They calculate the difference between these predictions from
BNs and the readout observations using the MSE. Then, they classify the new patient to
the class with the lowest MSE.

This chapter has provided the necessary background for the thesis. The tools
introduced here will be employed in the methodology implemented in the subsequent
chapter. Furthermore, ASP will play a crucial role in our methodology for identifying

pseudo-perturbations from single-cell transcriptomic data.
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CHAPTER 4

CONTRIBUTION 1: INFERRING BOOLEAN
NETWORKS TO MODEL HUMAN
PREIMPLANTATION DEVELOPMENT

“All models are wrong, but some are useful.”
— George E. P. Box (1919-2013)

“Models should be as simple as possible, but not simpler.”

— Albert Einstein (1879-1955)

Summary

This chapter outlines the framework I developed, which involves inferring
Boolean networks from both prior knowledge and single-cell transcriptomic
(scRNAseq) data. The work presented here brings together key findings from
two scientific articles, offering a unified perspective. The first, Bolteau et al.
[5] was published in the proceedings of the 19th International Symposium
on Bioinformatics Research and Applications (ISBRA 2023). I also presented
our work at the conference in Wroctaw, Poland. The second, Bolteau et
al. [6], published in the Journal of Computational Biology (JCB) in 2024,
provides a deeper exploration of the first paper’s findings. Our methodology
primarily focuses on inferring computational models capable of distinguishing
between two developmental stages. Our method selects pseudo-perturbations
from scRNAseq data since actual perturbations are impractical due to ethical
and legal constraints. By combining these pseudo-perturbations with prior
regulatory network, we are able to infer Boolean networks that accurately
align with scRNAseq data for each developmental stage. Furthermore, I

present the results obtained from applying this method to the study of
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trophectoderm (TE) maturation. As a result, we infer families of Boolean
networks corresponding to both medium and late TE developmental stages.
The structural differences between these networks unveil contrasting regulatory

pathways, offering valuable biological insights and hypotheses within this

domain.
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4.1 Introduction

In this contribution, we propose a framework to discover a family of Boolean

networks (BNs) of human preimplantation development that captures the discrepancy

from one developmental stage to another one. This framework uses a prior knowledge
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network (PKN) as a base on which the single-cell transcriptomic (scRNAseq) data is
mapped. Then, it identifies pseudo-perturbations specific for two developmental stages.
These pseudo-perturbations are used in the last step to infer stage-specific BN models.
Perturbation data is useful information to infer BN models [97, 99]. For this case study,
perturbation data is rarely available due to practical and legal concerns, our main
contribution was to extract pseudo-perturbation data from scRNAseq data, considering
its high redundancy. We used the Pathway Commons database [93] to build a PKN
and discovered 20 pseudo-perturbations (across 10 genes) characterizing medium and
late stages of trophectoderm (TE) maturation. They correspond to the gene expression
of 20 cells in each stage; representative on average of 82% of the total cells. Pseudo-
perturbations referring to 10 (entry) genes expression were connected (PKN information)
to 14 genes (output) expression. The 20 entry-output gene expression configurations
allowed us to infer 2 families of BNs (composed of 8 and 15 logic gates) characterizing

medium and late TE developmental stages.

4.2 Method

4.2.1 General presentation

Our method involves three steps aimed at constructing stage-specific Boolean networks
(BNs), as depicted in Figure 4.1. Initially, we reconstruct a prior knowledge network
(PKN) by querying a biological knowledge database to establish gene-gene interactions.
Subsequently, we establish an experimental design tailored to each developmental stage,
outlining the entries and outputs essential for BN inference. Finally, we integrate the
PKN with the previously created experimental designs to derive stage-specific BNs, using
Caspo software. Further elaboration on these steps is provided in the following sections.
Our implemented framework, along with the complete set of data and results, can be
accessed publicly at the following link: https://doi.org/10.5281/zenodo.10580801.
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A. PKN Reconstruction B. Experimental Design Construction
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Figure 4.1 — Developed framework comprising three main steps.
(A) The PKN was reconstructed using the pyBRAvo tool that queries the Pathway Commons database
with an input gene list.
(B) The ASP program selects a set of k genes (here, k = 3 with g4, gc and gp as selected genes) to
maximize pseudo-perturbation identification. In this example, 2 (optimal) pairs of pseudo-perturbations
are identified: (cq,c5) and (cg,cs). Redundancies in scRNAseq data are observed, with c3 sharing the
same Boolean vector as c¢q, representing two equivalent solutions. The second sub-step identifies pseudo-
perturbations maximizing readout difference between the two classes, leading to the selection of pairs
(c3,c5) and (¢, ¢y), forming the experimental design.
(C) Boolean networks (BNs) are inferred using the Caspo tool, combining the reconstructed PKN and
both experimental designs. Each BN is compatible with the PKN topology and minimizes the gene
expression error in the (entry-output) experimental designs.
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4.2.2 Definition of pseudo-perturbation

As previously seen (see Section 3.4.2), Caspo needs perturbations to infer BNs.
However, in the context of human embryonic development, due to diverse factors such as
ethical or legal concerns, perturbing the system is impossible. That is why we introduced

the concept of pseudo-perturbation.

Definition 4.1 Pseudo-perturbation. A pseudo-perturbation represents a Boolean vector
that encodes the expression status of a specific set of k genes within a particular cell. In
the context of comparing cells across various classes or developmental stages, a match
refers to a pair of 2 pseudo-perturbations from different classes that exhibit an identical

gene expression vector, signifying similarity in genetic activity.

We illustrate, in Figure 4.2, this concept with a toy example of 2 pseudo-perturbations
for each studied class (A and B) extracted from the Figure 4.1. The pseudo-perturbation
of the cell ¢; matches with the one of cell ¢5, where we observe the same Boolean vector
for genes g4, go and gp: [1,0,1]. We observe also a match between pseudo-perturbation
of cells ¢y and ¢4, with the identical vector [1,1,0]. In this toy example, we have two pairs

of cells illustrating two pseudo-perturbation matches.

. Gene | . Gene |
n matches n n
- N o e o - KN - KN
- KEEN - © o - HENEN

Class A Class B

Figure 4.2 — Example of pseudo-perturbations.
Each class (A and B) contains 2 pseudo-perturbations. The two perturbations of a specific class have a
match with another perturbation of another class. Here, two pairs of matches can be observed: {c1,cs}
and {cy, ¢4}
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4.2.3 Data

4.2.3.1 Datasets

As our focus is directed towards investigating the trophectoderm (TE) cell fate,
specifically targeting the medium TE and late TE developmental stages, we derive a
dataset, called SC, from the initial dataset containing the count matrix introduced in
Section 3.2. Moreover, we curated several data subsets to test various case studies, as
detailed in Table 4.1. We also included an extra case study (P in Table 4.1) from an

alternate dataset with phosphoproteomics data sourced from Chebouba et al. [11].

Table 4.1 — Datasets description.

Class name

1 2 ) 2 ) 2
Dataset Source (C1;C2) Genes Cells #C1’s cells #C2’s cells
A artificial C1;C2 10 10 5 5
B _ subset of BT MTE 30 24 12 12
single-cell data
f
C _ subsct o ETE . MTE 100 50 25 25
single-cell data
D _ subset of ETE . MTP 120 200 100 100
single-cell data
SC single-cell data ~ M P ;L% 111 680 348 332
hosphoproteomi
P PHOsp ggggeomms CR : PR 79 191 136 55

ETE = early TE ; M™® = medium TE ; L"E = late TE ; CR = Complete Remission ; PR = Primary
Resistant (see [11]). ' For dataset P, proteins are studied (not genes). > For dataset P, patients are studied
(not cells). ® From Chebouba et al. [11].

4.2.3.2 Preprocessing

First, we discretize raw gene expression data of input and intermediate PKN nodes
(see Section 3.1.1) by considering a gene to be expressed if at least 2 reads are identified
in the raw data.

The discretization formula is:

€ii = (4].)

J

O, lf Tij < 2,
1, otherwise.

Here, e;; is the binarized expression of the gene j for the cell i and r;; is the raw expression
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(number of reads) of the gene j for the cell 7.

Secondly, we normalize the readout gene expression between 0 and 1. We perform
a “min-max” mnormalization by identifying the minimum and maximum expression
measurements of all readout genes across all cells involved in the studied developmental

stages.

The normalization formula is:

Tii = Tmin

, (4.2)

N:: =
* Tmaz — Tmin

where n;; is the normalized expression of the gene i for the cell j, r;; is the raw expression of
the gene i for the cell j, and r,,;, (resp. ry,4,) is the minimum (resp. maximum) expression

value of all readout genes across all cells involved in the studied developmental stages.

4.2.4 PKN reconstruction
4.2.4.1 PKN generation

In our framework, the reconstruction of the PKN relies on the utilization of the
pyBRAvo tool [92]. Starting from a list of genes, pyBRAvo employs queries on the
Pathway Commons database [93] to identify the predecessors of the initial genes
(Figure 4.1A). This iterative process continues until a specified reconstruction depth is
reached. For more details, we refer the reader to Section 3.4.1. Through pyBRAvo, we
generate a gene interaction graph, serving as the foundational knowledge base for our
methodology. Pathway Commons v.13 is leveraged, excluding miRTarBase, MSigDB, and

CTD databases to eliminate miRNA and toxicogenomics interactions.

4.2.4.2 PKN reduction

Subsequently, this reconstructed PKN undergoes a reduction process to align with the
genes present in the count matrix. We also kept protein-complexes between these genes.
Furthermore, inputs directly linked to a single direct successor readout are eliminated to
focus solely on gene regulation pathways involving various gene types. Given the topology

of the PKN, we determine three types of genes: inputs, intermediates and readouts.
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4.2.5 Experimental design construction

Given the reduced PKN and the scRNAseq data of the two studied cell classes, we

construct an experimental design for each class (Figure 4.1B).

Definition 4.2 Experimental design. An experimental design comprises two parts:

1. pseudo-perturbations, which are binarized expression wvalues for input and

intermediate genes in chosen cells whose value is identical in both cell classes;

2. readout observations associated to the cells involved in pseudo-perturbations,

which are normalized expression values.

In the toy example in Figure 4.3A, we observe 2 pseudo-perturbations composed of
3 gene expressions for the class A’s experimental design. In addition, the two involved
cells match with two other cells in class B, which is also characterized by an experimental
design. For both experimental designs, we observe the same expression values for the input
and intermediate genes (g4, gc and gp), while different expression values are shown for
the readout genes (gr — gz). Two matching experimental designs can be represented in an
alternative way as in Figure 4.3B. On the left, gene expressions for the two experimental
designs are depicted, where black (resp. white) rectangle signifies a 1 (resp. 0), i.e., a
presence (resp. absence) of the gene. On the right, we show the evolution of the gene

expression between the two classes.

To capture the diversity of genes expression in scRNAseq data for each class, we
implement an ASP program to maximize the number of different pseudo-perturbations
for k genes, given a set of input and intermediate genes (see Section 4.2.5.1). The resulting
experimental design is based on the inputs, intermediates, and readouts of the PKN

obtained in the previous step.

This experimental design construction algorithm receives an integer k, as a parameter,
limiting the number of genes to be selected. Its input data is the preprocessed scRNAseq
matrix for input, intermediate, and readout PKN genes. The algorithm retrieves (i) a
maximal number of pseudo-perturbations, which identify cells associations between two
classes holding identical expression values for a set of k genes, and (i) cells associations
which maximize the readout difference across (redundant) cell associations. The details
of this algorithm are presented in the following sections. In addition, we illustrate the

experimental design construction process with a toy example in Section 4.2.5.3.
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A
ﬂ matches ﬂ

c " o 08 04 06 @Q—— — @ o " o 07 08 05

e 0 02 05 03 @ @ 0 06 01 02
Class A Class B

1
\
0
1
\
0
A B A B A B

Figure 4.3 — Example of an experimental design.

(A) Two experimental designs comprising 2 pseudo-perturbations, with 2 inputs in green, 1 intermediate
in red and 3 readouts in blue. The first, one the left characterizes the class A, while the second on the
right characterizes the class B.

(B) Graphical representation of two matching experimental designs. Each row (left side) represents a
pseudo-perturbation on the 3 selected input (green) and intermediate (red) genes. Binarized vectors are
illustrated using bars, where a black (resp. white) bar means the gene is active (resp. inactive). On the
right side, readout genes in blue are shown. In each box, the curve represents the normalized readout
gene expression evolution between the class A (A, left) and class B (B, right).

4.2.5.1 Pseudo-perturbation identification

Problem statement The input of this method is a binary matrix, E, where e
represents the presence or absence of gene j for cell i (see Section 4.2.3.2). The output
is a subset of genes and cells that adhere to various constraints, ensuring their pseudo-

perturbations are balanced between the two classes.

Let us denote by (', the complete set of cells; and by G, the complete set
of genes in our experimental data. Each cell is uniquely associated with one class
(either A or B); C'= Aw B. We use the binary matrix, F, to define the relation IG,
() = {9; € Gle;; = 1}. I9(¢;) thus represents the active genes, belonging to G, for cell
¢;. If G' € G, then the restriction of 1% to G is defined by IG’(CZ-) =1 NG
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Problem formulation. Given an association matrix E, associating a set GG of genes
to a set C' of cells, where C' is composed of cells belonging to 2 disjoint sets (classes) A
and B; and given a parameter k limiting the number of selected genes, find a subset G of
genes and the largest subset C" (C" =A'wB' cC, where A'c Aand B' ¢ B) satisfying

the three following constraints:

Constraint 1. The size of G is fixed to k (parameter). For large instances k << |G|.
Constraint 2. Y¢y,co € A (vesp. B'), ¢1 # ¢, ¢ (1) # ¢ (cy).

Constraint 3. Y¢; € A' (resp. B'), 3¢y € B' (resp. A'), such that IG,(cl) = IG,(CQ).

From this result, for each ¢; € C' we define a binary vector bi, such that for
je{l,- k}, bé- = 1 (resp. b; = 0) if gene g, € I°(¢) (resp. ¢ 1° (¢:)). b’ is called a
pseudo-perturbation. Notice that since the sets G' and C' are not unique, there may exist

several pseudo-perturbations vectors.

Finally, we optimize n = |bi|, the number of pseudo-perturbations using a
maximization: maxn. This aims to identify as many pseudo-perturbations as possible

to enhance the robustness of the BN inference

Constraints justification. The imposed constraints are crucial in light of the entire
framework, which encompasses Boolean network inference and single-cell data.

Constraint 1. This constraint reduces the search space, improves computational
efficiency, and simplifies the subsequent step of learning Boolean networks.

Constraint 2. The second constraint prevents redundancy in gene selection from
different cells within the same class. This is essential due to the abundance of zero values
and redundancy in single-cell data.

Constraint 3. The last constraint promotes similarity in gene expression values between
the two distinct classes. This consistency enables meaningful comparative analysis during
the subsequent step of Boolean network inference. Despite the inherent evolutionary
differences between cells belonging to different classes, selecting genes with similar
expression values allows us to impose comparable entry conditions on the system,
facilitating accurate modeling of the distinct regulatory mechanisms at play. This
Constraint 3 enables comparable analysis in the subsequent step of Boolean network

inference. Finally, selecting a larger number of pseudo-perturbations, using the pseudo-
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perturbation maximization, provides more information, enriching the Boolean network

inference step and allowing for exploring various regulatory mechanisms.

In addition to this problem formulation, we present in Section 4.3.1 a line by line

description of the ASP logic program.

4.2.5.2 Maximization of readout differences

Pseudo-perturbations identified by the previous algorithm relate cells in A' to those
in B', forming matching pairs of cells. However, a cell of a specific class can be involved
in multiple matching pairs with the same expression vector. To determine which pair to

select, we apply a readout difference maximization.

Problem formulation. Given a set of pseudo-perturbation binary vectors, O, and given
the matrix of preprocessed scRNAseq data of normalized readout values, find the sets of
cells A™ and B™, associated to all pseudo-perturbation vectors in O, that maximize the
difference of readout vectors, A (for readouts of cells in A™) and rB* (for readouts of
cells in B™).

Algorithm. For each vector b in the set of optimal pseudo-perturbations, relating cells
¢ (in A" and ¢, (in B'):

1. Compute a set of redundant cells for each class. This involves identifying cells in
class A with an identical binarized vector b, denoted as set Rf, and likewise for class

B denoted as Rf. Both sets, Rf and Rf, include cells ¢; and ¢y respectively.

2. Iterate across all pairs of cells in R{)4 X Rf, and calculate the difference of readout

gene values while keeping the maximal difference.

We retrieve an association of each optimal pseudo-perturbation to a vector of
normalized readouts expression that maximizes the difference between the two classes.
Additionally, we calculate the representativity score for the optimal pseudo-perturbations
by considering the number of redundant cells. Let n” be the number of cells in class A,

and let O be the set of Boolean vectors in all optimal pseudo-perturbations for class A.
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The representativity score S A for class A is defined as follows:

_ Tuol R

nA

54 (4.3)

4.2.5.3 Illustration of the experimental design construction process with a

toy example

In this section, we illustrate the construction of the experimental design through a
toy example. We consider a toy count matrix that includes the expression of 3 binarized
input genes, 2 binarized intermediates genes, and 3 normalized readout genes for 3 cells

in two classes (Figure 4.4A).

Pseudo-perturbation identification The first objective is to maximize the number
of identified pseudo-perturbations. In this example, we set k£ = 3, indicating our aim
to identify pseudo-perturbations containing the expression of 3 genes. In this scenario,
our method selects genes g4, go and gp in order to maximize the number of pseudo-
perturbations (Figure 4.4A). As defined in Definition 4.1, a cell involved in a pseudo-
perturbation matches with another cell of a different class, forming a pair. Both cells
exhibit identical Boolean vectors (for the k selected genes). Our toy example exhibits
two pairs of cells (Figure 4.4B). The first pair consists of cells ¢; and ¢, both displaying
the vector [1,0, 1]. Similarly, the second pair comprises cells ¢, and ¢4, sharing the vector
[1,1,0]. Thus, each class (A and B) comprises a maximal number of pseudo-perturbations
equal to 2. However, redundancies arise, notably with cell ¢3 sharing the same Boolean
vector as cell ¢y, representing two equivalent solutions for maximizing the number of
pseudo-perturbations (Figure 4.4B). To resolve this, a maximization of readout differences
is undertaken. The underlying concept is to maximize the divergence in output (readout

expression) between the two stage-specific experimental designs.

Readout differences maximization We identify 2 equivalent solutions. For class A,
we count 2 redundant cells: ¢; and c3, while class B does not contain any redundancies.
In this instance, our objective is to determine which cell to select between ¢; and cs.
We respectively calculate the readout differences between these cells (¢; and ¢3) and
¢s resulting in readout_ diff(c;,c5) = 0.6 and readout_ diff(cs,c5) = 0.9 (Figure 4.5).

Given that the latter difference is maximal, ¢ is selected. In summary, the maximization
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matches

Cell ¢, Cell cs
[1,0,1] [1,1,0]

Cell c; Cell ¢cs
[1,1,0] [1,0,1]

Cell cs Cell cs
[1,0,1] . [0,1,0]

Redundancy
Selected genes : ga, gc and go Cells c; and c; are redundant cells

Figure 4.4 — Illustration of the pseudo-perturbation identification.
(A) The method selects a set of k = 3 genes, consisting of genes g4, gc and gp. The subsequent expression
vectors for the selected genes in each cell are computed.
(B) Two optimal pseudo-perturbations are identified for classes A and B, involving the cells ¢; and ¢y,
and cells ¢4 and c5, respectively. Redundancies in scRNAseq data are observed, with cell ¢3 sharing the
same Boolean vector as cell ¢, representing two equivalent solutions.

of readout differences leads to the selection of pairs (csz,c¢5) and (cy,¢y), forming the

experimental designs.

Additionally, for this toy example, we compute the representativity scores (see
Equation 4.3) for classes A and B:

4 YeolBil (2+1)
-meo ) 22U

S L,
where n”' is the number of cells in class A, here 3, and O is the set of Boolean vectors in

all optimal pseudo-perturbations for class A, here |O| = 3.

_ ZbeOlRfl _ (1+1)

B
S "z 3

= 0.667,

where n” =3, and |0| = 2.

Thus, for class A, the two pseudo-perturbations represent 100% of the total cells, while

the representativity score for class B is 66.7%.

Finally, for this example, we compute two experimental designs specific to each
studied class, each comprising 2 pseudo-perturbations. Note that we have the same
Boolean expression for input and intermediate genes, but different readout gene expression
(Figure 4.5).
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[ Cell | 9o | Class| [ Cell | 9o |
c1 0 [Ellos 0406 A Cs o [Ello7 0805 B
c2 0 020503 A Cs 0 060102 B
readout_diff(cs,cs) = |0.8-0.7| +|0.4-0.8| + |0.6-0.5| = 0.6
VS.
readout_diff(cs,cs) = |0.8-0.7| +]0.3-0.8] + |0.9-0.5| = 0.9
9o | 9 | Selected
Cs 0 [Elos 0309 A Cs 0 o7 08 05 B |experimental
c 0 020503 A c 0 060102 B designs
Experimental design of class A Experimental design of class B

Figure 4.5 — Illustration of the readout difference maximization.
As class A contains redundant cells (¢; and c3), the algorithm selects the one that maximizes the readout
differences. The readout_diff () function is applied to the two potential pairs (ci,c5) and (c3,c¢5),
yielding a maximal difference for the pair (c3,c5). Thus, cell c3 is selected to be part of the pseudo-
perturbations.

4.2.6 BNs inference

Description Here, we outline the process of inferring Boolean Networks (BNs) for each
studied class using Caspo [99] (Figure 4.1C). The goal is to derive BNs that accommodate
both biological knowledge represented by gene interactions in the PKN and the observed
gene expression in the case study. Using logical rules and constraints, Caspo computes
BNs that best fit the data through optimizations (using the mean squared error function,
MSE), allowing an optional fixed tolerance. The method outputs a set of BNs for each
class, derived from the same input (prior knowledge and pseudo-perturbations data)
but with different outputs (readout values). These BN families encapsulate knowledge
and observations by establishing logical connections between genes. Comparing these BN

families enables the identification of distinct behaviors between classes.

INlustration of the BN inference process with a toy example Once again,
we illustrate the BN inference step through a toy example (Figure 4.6). Consider a
reconstructed Prior Knowledge Network (PKN) comprising 9 genes, with 3 readouts.
Additionally, consider class-specific experimental designs consisting of 2 pseudo-
perturbations and their readout associated expression value for genes ¢gp, g, and gy
(from the toy example illustration in Section 4.2.5.3).

Employing Caspo [99] and integrating the PKN and the class-specific experimental
designs, we infer a BN family for each class. Briefly, we observe distinct regulatory
mechanisms modeling the class observations. For instance, in class A, a combination of

g4 and go (with an “AND” logic gate) is necessary to influence gp, whereas in class B,
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gene g, alone inhibits gene gp, while gene gp is associated with gene go to activate gene
gi- Moreover, in class A, only 2 readout genes (gr and gg) are considered for modeling,

while in class B, all readouts are essential.

3 0o | 0o |
of oy s o M08 0309 A Cs o [Elo7 0805 B
c2 0 020503 A Cs 0 060102 B
o Experimental design of class A Experimental design of class B
| L | I
' !

I >

9A gc

3 'y

BN family of class A BN family of class B

Figure 4.6 — Illustration of the BN inference.
Two executions of Caspo are conducted to learn Boolean network (BN) families, each specific to a class.
The same PKN was used, while two different experimental designs were employed (note the differences
in readout gene expressions in blue). Different regulatory mechanisms can be observed in the two BN
families.

4.3 Results

4.3.1 ASP program

In this section, we provide a step-by-step explanation of the ASP program devised
to optimize the count of pseudo-perturbations. Our program, based on the method
proposed in Chebouba et al. [11], differs primarily in the rule governing the generation
of distinct Boolean pseudo-perturbation vectors (see Section 4.2.5.1, Problem statement,
Constraint 2). Our logic program is tailored specifically to handle scRNAseq data, which
often exhibits redundancy due to cells within the same developmental stage sharing
identical gene expressions. Additionally, scRNAseq data commonly presents a strong

abundance of zero values.

In Program 4.1, we present the ASP program to identify pseudo-perturbations.
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{selgene(G) : pert(C,G,S,CL)} = k.

selpert(C,G,S,CL) :- selgene(G), pert(C,G,S,CL).

equal(I,J,G) :- selpert(I,G,S1,Cl1), selpert(J,G,S2,C2), C1<C2, S1=S2.

countequal(I,J,M) :- M = {equal(I,J, )}.

O{match(I,J)}1 :- countequal(I,J,k).

nbInputOnes(C, N) :- N = {pert(C,G,1, ) : selinput(G)}, match(C, ).

:- match(C,_), nbInputOnes(C,N), N<1.

diff(I1,12,G) :- selpert(I1,G,S1,Cl), selpert(I2,G,S2,C2), C1=C2,
S11=82, I1<I2.

9 countdiff(I1,I2,M) :- M = {diff(I1,I2, )}.

10 :- countdiff(I1,I2,0), match(Il, ), match(I2, ), I1<I2.

11 :- countdiff(I1,I2,0), match( ,I1), match( ,I2), I1<I2.

12 #maximize{l,I: match(I, )}

O I O Ut = W N

Program 4.1 — ASP encoding of pseudo-perturbation identification.

The pert/4 predicate, an instance in our program referring to experimental data,
emerges from discretized scRNAseq data associated with input and intermediate genes. It
delineates the expression of gene G at value S in cell C| linked to class C'L. Starting from

line 1, our logic program initiates by selecting a set of k£ genes from all potential input

m

k
sets, where m denotes the total count of input and intermediate genes. The subsequent

and intermediate genes using the selgene/1 predicate. This process generates ( ) answer
rules aim to filter these candidate answer sets. Line 2 introduces the selpert/4 predicate,
summarizing experimental data for the selected genes. Following this, line 3 employs the
equal(I,J,G) predicate to identify pairs of cells [ and J from distinct classes (C1<C2),
exhibiting the same measured value S for gene G (S1==S2). Moving forward to line
4, the countequal(I,J,M) predicate enumerates the count of genes M demonstrating
identical values across cells I and J. Recall that we are interested in finding k identical
values associations for k genes. Therefore, in line 5, we define the predicate match(I,J),
representing a matching pair of cells I and J having the same expression for the k selected
genes. Notice that the terms match/2, represented by variables I and J, pertain to cells in
the first and second classes, respectively. To discard the redundancies, we generate either

0 or 1 occurrence of the matching pair, to keep only distinct pseudo-perturbations.

Lines 6-7 introduce rules to handle data sparsity. Line 6 defines nbInputOnes/2,

calculating the count of input genes having a value of 1 for a cell C selected by the match/2
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predicate. Then, line 7 prohibits the selection of an match(C, ) if the count of 1-valued
input genes in cell C' is less than 1 (N<1). This ensures that each pseudo-perturbation has
at least one active input gene, disallowing vectors where all genes remain inactive (equal
to 0).

To discern distinct pseudo-perturbations within the same class, additional rules
(lines 8-11) are introduced. Line 8 defines the diff(I1,I2,G) predicate, selecting cells
I1 and I2 from the same class but with distinct values for gene G (81!=S2). The
subsequent countdiff/3 predicate on line 9 records the disparities in expression values
of the selected genes between cells I1 and /2. In line 10 (resp. line 11), the constraint
forbids predicates countdiff (I1,I2,0), where there is no difference in expression values
for the selected genes, for cells I1 and I2 selected to be affinities in line 5 for the
first class (resp. for the second class). Combined lines 5, 10, and 11 keep only one
matching pair among all redundancies in the output solution. For instance, in the
first class illustrated in Figure 4.7A, we retain only one match between match(c1,c3)
and match(c2,c3). Similarly, for the second class, we select either match(c4,c5) or
match(c4,c6) (Figure 4.7B). In these cases, the selected matching pair will be inferred
by the line 5, while the other will not.

A B

matches matches
cl c5
c3 c4
c2 c6
First Second First Second

Figure 4.7 — Illustration of handling cell redundancies in the ASP program.
(A) Cells ¢l and ¢2 are redundant in the first class because they match with ¢3. Combining the lines 5 and
11 of the Program 4.1, the ASP program will select only one match/2 predicate, i.e. either match(c1,c3)
or match(c2,c3).

(B) Similarly, cells ¢5 and ¢6 are redundant in the second class. The ASP program will select only one
match/2 predicate, i.e. either match(c4,c5) or match(c4,c6).

Finally, line 12 aims to maximize associations specified by the match/2 predicate
concerning the first class (left term), corresponding to the number of pseudo-
perturbations. The second class will have the same number of pseudo-perturbations due
to the pairwise nature of matches. If we take the example in Figure 4.7A, two optimal

equivalent solutions are possible: {(cl,¢3)} and {(c2, c3)}. However, the program retains
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only one of them, but we have the possibility to recover all solutions through post-
processing.

The complexity of our program can be analyzed considering two factors impacting the
size of the search space: (i) the selection of k genes from a total set of G genes, and (ii)
the choice of pairs of cells. That is, for each possible selection of k£ genes, an amount of ¢
associations between cells in classes A and B (where the values of the k genes coincide)
has to be tested to discard redundancies within the same class. The maximum value for
¢ is |A| x | B|; which represents associating all cells in both classes. The solver performs
backjump and conflict-driven learning, optimizing the search space; thus, our estimate
measures a worse case. The estimated complexity (see Equation 4.4) implies that our
algorithm is exponential on the number of considered genes and cells from our scRNAseq

dataset.

O(('i') x 2l AXIBly (4.4)

where |G| is the total number of genes, k is the number of genes to select and | A| (resp.

| B|) is the number of cells in class A (resp. class B).

4.3.2 Program application on different benchmarks

Our pseudo-perturbation identification program proposes an additional constraint,
specifically aiming to ensure the generation of distinct pseudo-perturbations comprising
k expressed genes within the same class. While increasing computational time, it proves
valuable in handling redundant scRNAseq data.

Both programs were applied to datasets A — P (see Table 4.2). For comparison
purposes, we post-processed the results from Chebouba et al. [11] (C in Table 4.2) by
removing redundant solutions (values in parentheses in Table 4.2). For further insights
into dataset specific features, please refer to Table 4.1.

Optimal solutions were attained by both programs for datasets A and B (see
Table 4.2). Suboptimal results are denoted with an asterisk (*) over the fixed timeouts.
Our program (O in Table 4.2) yielded suboptimal results for datasets C' — P, while
Chebouba’s program (C' in Table 4.2) exhibited suboptimal outcomes for datasets D and
P. Chebouba’s version demonstrated shorter execution times than our version when no
timeout was imposed. Analysis of the number of distinct pseudo-perturbations generated

by each program reveals two different behaviors contingent on dataset nature and
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complexity. Firstly, for single-cell datasets (A—SC'), Chebouba’s program computes either
an equal or a smaller count of pseudo-perturbations when removing redundancies. For
instance, for dataset C';, Chebouba’s program derives an optimal solution comprising only
1 distinct pseudo-perturbation, while our program yields suboptimal results, generating
6 and 11 distinct pseudo-perturbations for £ = 3 or k£ = 10 respectively. This disparity
is more pronounced in larger datasets like D (10 vs. 22) or SC (3 ws. 20). It indicates
that Chebouba’s program infers numerous redundant solutions, lacking the ability to
differentiate them effectively, highlighting our program’s superiority in handling scRNAseq
data. Secondly, our version showcases superior outcomes for phosphoproteomics data
(23 wvs. 25), affirming its adaptability across single-cell or averaged cell population gene-

expression datasets.

Table 4.2 — Comparison of ASP programs on different datasets.

Execution time Distinct Pseudo-Perturbations
Dataset k

C O C O

3 0.008s 0.008s 3 (4) 3

B 3 0.048s 0.223s 1 (132) 4

c 3 1.420s 10 min* 1 (625) 6
10 1.424s 10 min* 1 (600) 11

D 10 10 min* 10 min* 10 (2,436) 22
SC 10 5h 2 min 65h* 3 (77,618) 20
P 10 50h* 50h* 23 (64) 25

C' corresponds to the Chebouba’s logic program, while O corresponds to our logic program. For
Chebouba’s program, in parenthesis, the total number of pseudo-perturbations vectors (redundancy
comprising). * Execution time corresponds to the fixed timeout.

4.3.3 Discrimination of the medium and late trophectoderm

stages

PKN reconstruction We used 438 transcription factor (TF) genes involved in human
embryonic development as input for pyBRAvo software [92] to reconstruct a PKN.
These TF genes were identified through WGCNA [71] analysis of scRNAseq data (see
Section 3.2.2 ; TF list in Appendix D). The exploration depth parameter was fixed to 2,
i.e., up to 2 levels upstream of the initial TFs. Only gene transcription events were queried,
yielding a PKN of 327 nodes and 475 edges, with only 28 of the 438 initial TFs found in
the database. We then reduced the network to 191 nodes (84 input genes, 27 intermediate

77



Chapter 4 — Contribution 1: Inferring Boolean networks to model human
preimplantation development

genes, 14 readout genes, and 66 complexes) and 285 edges (Figure 4.8), limited to genes

measured in scRNAseq data and complexes linked to these genes.

ngq %ﬁ

obe]
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T I_' '

Input gene @ Intermediate gene Readout gene Complex

'

-<— Activation +—— Inhibition o— Part of

Figure 4.8 — Reconstructed Prior Knowledge Network.
A better quality version of the figure can be found in the Appendix E.

Experimental design construction We generated pseudo-perturbations for the
experimental design using the method described in Section 4.2.5.1, which employed the
set of input and intermediate genes from the reduced PKN, comprising 111 (84 + 27)
genes. Our analysis focused on the expression of these genes across 680 cells, which were
identified to be in medium and late TE developmental stages (see Table 4.1, dataset SC').

We tested different values of k, the number of selected genes, similar to those used
in Videla et al. [99], the study introducing Caspo. We observed the number of pseudo-
perturbations generated after 30 hours of calculation on a computer cluster and computed
the representativity score (Equation 4.3) for each k value. Based on our results, k = 10
was the best trade-off between a high number of pseudo-perturbations and a high
representativity score (see Figure 4.9). This value was also used in Chebouba et al. [11],
supporting our decision.

Our method produced 20 pseudo-perturbation Boolean vectors, which paired medium
and late TE cells to maximize the expression value difference of 14 readout genes. In

Figure 4.10, we present the experimental design composed of 24 genes: 7 inputs genes
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Figure 4.9 — Impact of k£ on the number of pseudo-perturbations

and their representativity.
The number of pseudo-perturbations was found after 30 hours of calculation on a computer cluster. The

representativity score is the mean of the two representativity scores calculated for both classes medium
and late TE (see Equation 4.3).

(in green), 3 intermediate genes (in red), and 14 readouts (in blue). Each row represents
a pseudo-perturbation (on the left, ordered from most to least representative) and its
readout observations. Note that each vector is unique. We observe some readout genes with
minimal variations (mean of expression difference between both stages less than 0.06), e.g.,
DECT or SOD1, and some readout genes where a significant variation (mean of expression
difference between both stages greater than 0.30) is observed, e.g., CEBPB, CEBPD or
GSR. These last also appear in the learned BNs (see Figure 4.12). In Figure 4.11, a more
detailed examination of the expression of readout genes in the learned BNs is presented.
For instance, CEBPB, identified in the late TE BN, exhibits lower expression in medium
TE compared to late TE. Conversely, PSAT1, present in both medium and late TE stages,

shows minimal expression variations between the two stages.
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Figure 4.10 — Graphical representation of computed experimental designs.
Each row (left side) represents an optimal pseudo-perturbation on the 10 selected input (green) and
intermediate (red) genes. Binarized vectors are illustrated using bars, where a black (resp. white) bar
means the gene is active (resp. inactive). On the right side, readout genes in blue, present in the inferred
BNs (cf. Figure 4.12), are shown. In each box, the curve represents the normalized readout gene expression
evolution between the medium TE (M, left) and late TE (L, right) developmental stages.

BN inference Using Caspo software [99], we infer families of BNs for medium and late
TE using the reconstructed PKN and specific experimental designs. Caspo generates BNs
adhering to PKN topology, optimizing the Mean Square Error (MSE) between Boolean
predictions of readout nodes and experimental measurements. Our Caspo parameters are
set as: (i) length = 2 to restrict nodes receiving at most 2 “AND” logical functions,
(i1) fitness_tolerance = 0.0001 to permit exploration beyond the optimal BN up to
a distance of 0.01% from the optimal MSE, and (7ii) size_tolerance = 0 to avoid any
tolerance in size. The first parameter is fixed to simplify the exploration search. The
second is set to strike a balance between strict exploration (searching for optimality only)
and avoiding too much laxity. The third parameter is fixed to ensure the BNs are as

minimal as possible in terms of size.

Figure 4.12 displays the learned BNs union for the two studied developmental stages.
The size is equal to 8 for medium TE and 15 for late TE, with respective optimal MSEs
of 0.1421 and 0.1924. The higher MSE for late TE indicates a more intricate fitting
between inferred BNs and experimental data, resulting in less precise BNs compared to
medium TE. While the medium TE family contains 2 BNs, the late TE family comprises
4. Notably, these BN families diverge in gene regulatory mechanisms. Late TE BNs display
more extensive connectivity with 3 inputs and 4 readouts, compared to 2 inputs and 1
readout in medium TE. Both share 4 genes, including 2 inputs (SMAD3 and E2F1), 1
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Figure 4.11 — Graphical representation of computed experimental designs

focusing on readouts involved in inferred BNs.
Each row (left side) represents an optimal pseudo-perturbation on the 10 selected input (green) and
intermediate (red) genes. Binarized vectors are illustrated using bars, where a black (resp. white) bar
means the gene is active (resp. inactive). On the right side, readout genes in blue, present in the inferred
BNs (cf. Figure 4.12), are shown. In each box, the curve represents the normalized readout gene expression
evolution between the medium TE (M, left) and late TE (L, right) developmental stages.
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intermediate (EGR1), and 1 readout (PSAT1). Late BNs exhibit supplementary readout
genes, namely GSR, CEBPB, and CEBPD, indicating that the readout measurements
matched the late TE BNs prediction, given the selected pseudo-perturbation Boolean
vectors. However, medium TE BNs could not predict the observed measurements with
minimal error on these three genes. This suggests higher complexity in late TE regulatory

mechanisms compared to medium TE.

Medium TE stage BNs Late TE stage BNs
SMAD3

CREM

MSE =0.1924
Size =15
#BNs =4

MSE =0.1421

Size =8
#BNs =2
PSAT1
input -intermediate readout
— activation — inhibition PSAT1 CEBPB CEBPD

Figure 4.12 — Families of inferred Boolean networks (BNs)

for medium and late TE developmental stages.
Each network represents the union of (sub-)optimal BNs learned from the reduced PKN and the
experimental design. Recall that we set the fitness parameter to fitness_ tolerance = 0.0001, allowing
the inference of suboptimal BNs with a superior MSE up to 0.1% of the optimal MSE. The colored
nodes represent genes associated with experimental designs, including input and intermediates involved
in pseudo-perturbations, and readout genes. The width of the arcs represents the frequency of occurrence
of this arc in the BNs.

4.4 Discussion and conclusion

Studying human embryonic development poses challenges, often requiring system
perturbations, which are infeasible here. To overcome this, we propose an original
framework utilizing human embryonic scRNAseq data to identify pseudo-perturbations
and construct Boolean network families representing two specific developmental stages.

As significant results, we developed an algorithm to obtain pseudo-perturbations
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from scRNAseq data demonstrating scalability and efficiency through benchmarking with
datasets of varying sizes. The worst-case search complexity for the real case study was of
(11101) x 2798332 = 3 96 x 10*17 (see Equation 4.4), and our partial results were generated
in 65h. We prove that our algorithm allows for more diverse pseudo-perturbation sets
than the state-of-the-art method Chebouba et al. [11], which studied cell population-
averaged measurements. We can simulate real perturbations by identifying pseudo-
perturbations and proposing more precise (such as Boolean) computational models. Our
method identified 20 pairs of cells with Boolean expressions coinciding with selected
genes, representing of 75% and 89% of the complete set of cells in medium and late

TE developmental stages, respectively.

To contextualize the retrieved set of 20 pseudo-perturbations, it is important to note
that these 20 pseudo-perturbations represent a suboptimal result obtained after 65 hours
of computation. If we keep running the program more pseudo-perturbations would be
found. For this suboptimal solution, we exploit the cell redundancies via the readout
maximization. This solution comprises & = 10 selected genes; however, this solution is not
unique, as other subsets of k£ genes exist to identify 20 pseudo-perturbations. We compute
a suboptimal count of equivalent solutions yielding more than 1 million of solutions. In the
next chapter, we explore the space of equivalent solutions, in terms of similar selections

of k genes and convergence in the number of pseudo-perturbations.

Using diverse pseudo-perturbations sets, we generate families of Boolean networks to
distinguish medium and late TE developmental stages in human embryonic development.
The BNs propose Boolean functions derived from the Pathway Commons database to
model gene regulation mechanisms. Late TE cells exhibit a more complex BN structure
(size 15 vs. 8) than medium TE cells. These findings are consistent with the fact that late
TE requires a gain of biological function to help the embryo implant in the endometrium.
Differently, from methods that propose a single computational model of averaged cells,
our method includes a subset of 20 cells for each stage and learns optimal families of BNs

representing the diversity of expression mechanisms within this cell subset for each stage.

Compared to other methods proposing computational models from scRNAseq data [62,
68], our method outputs logic models when no perturbation data is available, and uses a
pool of cell behaviors to represent a single developmental stage. Extending this approach
to other developmental stages could deepen our understanding of regulatory mechanisms
in the human embryonic development. In addition, its adaptability makes it versatile for

diverse case studies.
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As perspectives from these results, we intend to study the impact of parameters used in
the PKN reconstruction step, such as exploration depth or excluded databases. Meaningful
interactions may be lost at this step. In addition, we only retrieve around 8% of the initial
TFs for the reconstruction (28 out of 438), indicating a need for further research to enhance
the PKN. Furthermore, the considerable storage and execution time requirements (65
hours for 20 pseudo-perturbations, with a memory footprint of 292 GB) highlight a need of
improvement of the algorithm is required in order to expedite the process. Finally, we want
to further investigate the exploration of equivalent solutions by potentially incorporating
constraints inspired by biological hypotheses. These forward-looking perspectives form
the crux of the subsequent chapter, where we refine our methodology and unveil novel

insights.
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CHAPTER 5

CONTRIBUTION 2: MORE ROBUST
INFERRED BOOLEAN NETWORKS USING
SCIBORG

“The task is, not so much to see what no one has seen yet; but to think
what nobody has thought yet, about what everybody sees.”
— Arthur Schopenhauer (1788-1860)

Summary

This chapter introduces SCIBORG, an improvement of the presented method
in previous chapter allowing the learning of Boolean networks from singe-cell
transcriptomic data and prior knowledge. The method and findings presented
here will be the subject of an upcoming article to be submitted to a journal in the
field of computational biology. SCIBORG builds upon the method discussed in
Chapter 4. We present enhancements made to the ASP program for identifying
pseudo-perturbations, enabling better results in less computational time. In
this work, we investigate findings in detail, exploring equivalent solutions to
provide more exhaustive results. We also introduce a cell classifier that sorts
a given cell into a specific developmental stage. Focusing on medium and late
trophectoderm (TE), we learn two distinct BN families and identified stage-

specific regulatory mechanisms.
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5.1 Introduction

Understanding the regulatory mechanisms involved in cell differentiation process
is central to studying the human embryonic development. Such chain of events
regulates human preimplantation development, leading to an implantation-competent
embryo. Advanced technologies like transcriptomics enable deciphering regulatory events
implicated in this system. This helps biologists to refine robust embryo quality assessment
techniques, and potentially improve assisted reproductive technologies, such as in vitro
fertilization, which has a low success rate of around 25%. Future advances in this field
establishing computational models for preimplantation development that are truly useful
for simulating the system.

Typically, system perturbations and their impacts are used to model a system. Dunn
et al. [68] inferred mouse embryonic models from single-cell transcriptomic and knockout
data on mouse stem cells, revealing insightful results via a perturbation-based approach.
Another study by Chevalier et al. [62] learned ensembles of dynamical logic models of

the cell fate differentiation implicated in tumor invasion and migration. This method did
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not use system perturbations but utilized averaged cell expressions of each differentiation
stage, providing an overview of the involved differentiation processes. In Moignard et
al. [69], the authors use single-cell expression of tens of genes well characterized in the
early blood development to infer Boolean networks. These BNs allowed the researchers to
identify regulatory mechanisms of 20 transcription factors modeling the cell differentiation
in the studied system.

In our study, perturbations are unfeasible due to various factors, such as ethical,
biological or legal constraints. Moreover, we aim to include as much gene expression data
as possible from the scRNAseq data we have. Our goal is to understand the underlying
regulatory mechanisms leading from a stage to another in cell fate decisions. To investigate
this question, we developed in Bolteau et al. [5] a method to infer Boolean networks
modeling two developmental stages, distinguishing them by discrepancies in involved
regulatory mechanisms. One primary concern of this method is the computation time
and memory required to obtain results. To overcome this, we introduce SCIBORG.

SCIBORG is an improvement of our previously presented findings, significantly
reducing execution time and memory usage. It explores outcomes in detail, enabling
the production of more exhaustive and robust results and offers the possibility to
identify regulatory mechanisms involved in specific developmental stages. Furthermore,
our method could be extended to be applied on different developmental stages and various
biological studies.

In this study, we undertook the Boolean network (BN) inference as a Boolean
satisfiability problem relying on ASP. Focusing on medium and late trophectoderm (TE)
developmental stages, we identified 96 pseudo-perturbations compared to 20 in previous
studies, in less computational time, from single-cell transcriptomic data. Leveraging prior
knowledge from databases and these identified pseudo-perturbations, we learned stage-
specific BN families. The inferred BNs are robust and suggest exhaustive identification of

stage-specific regulator mechanisms.

5.2 Improvements of the method

In this section, we present enhancements and key modifications of our method
presented in Chapter 4. Thus, the improved method, providing more enxhausive and
robust results, is named SCIBORG for using Single-Cell data to Infer BOolean networks
modeling Regulation of Genes. In a nutshell, SCIBORG comprises the same steps: (7) PKN
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reconstruction, (7) experimental design construction, and (74) BN inference. Regarding
data preprocessing, we explore a new normalization method using an arctangeant
function. Additionally, we extend our investigation by employing a larger PKN, achieved
by increasing the reconstruction depth for pyBRAvo. As demonstrated previously,
the efficiency of our ASP program for pseudo-perturbations identification leads to an
improvement in terms of storage and computational time. Here, we refine this program
by adjusting some rules and constraints. Furthermore, we delve into other aspects of
our results by analyzing equivalent solutions for k selected genes and a specific number
of pseudo-perturbations. Additionally, we introduce a cell classifier that enables cell

classification.

5.2.1 Preprocessing

We consider 3 types of genes: inputs, intermediates and readouts, based on the
PKN topology. Inputs and intermediates are binarized following the formula presented
in previous chapter (see Equation 4.1). Readout genes undergo normalization. We explore

two normalization techniques to scale the expression values to the range [0, 1]:

1. a “min-max” normalization:
i = Tmin

e T —— (5.1)

2. an “arctangeant” normalization:

2
ni; = — X arctan(r;;) (5.2)

Here, in both equations, n,; represents the normalized expression of the gene j for
the cell 7 and r;; denotes the raw expression of the gene j for the cell i. For “min-max”
normalization, r,,;, (resp. ry,q.) i the minimum (resp. maximum) expression value of all
readout genes across all cells involved in the studied developmental stages.

In Figure 5.1A, we present the functions of the two normalizations, with arbitrary
values r,,;, = 0 and 7,,,, = 200 for “min-max” normalization. Given these functions,
the number of intermediate values (around 0.5) is more important for “min-max”
normalization, which is a linear function. This phenomenon becomes apparent when
analyzing the distribution of normalized expression of readout genes involved in the PK N 0
(see Section 5.3.2). Numerous genes have intermediate expression considering the “min-

max” normalization, while for “arctangeant” normalization, expression values are closer
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Figure 5.1 — Comparison of “min-max” and “arctangeant” normalizations.

(A) Normalization functions represented graphically. On the left, the“min-max” normalization following
Equation 5.1 with r,,;, = 0 and r,,,, = 200, and on the right, “arctangeant” normalization following
Equation 5.2.
(B) Readout gene expression frequency of the two explored normalizations. On the left, the“min-max”
normalization distribution and on the right, “arctangeant” normalization distribution. We consider for
these distributions the 19 readout genes involved in the PKN 0 (see Section 5.3.2), expressed in the 680
cells across medium and late TE developmental stages.

to 0 or 1 (Figure 5.1B).

Recall that Caspo predicts readout values through inferred BNs and predicts either 0
or 1 value for each readout (see Section 3.4.2). Given a prediction of Caspo (0 or 1), the
distribution of “min-max” normalization implies, in average, a small distance between the
prediction and the real value. In contrast, for “arctangeant” normalization, the distance
will be larger if the prediction does not fit well with the real value, e.g., prediction of 0

and real value around 1.

Furthermore, “min-max” normalization is specific to readouts and cells: the minimum
and maximum can vary if we consider other developmental stages or readouts. This could

lead to data-dependant outcomes, which is not the case with “arctangeant” normalization.
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5.2.2 PKN reconstruction

As observed previously, the PKN reconstruction relies on pyBRAvo software. Thanks
to our improvements in pseudo-perturbations identification program (see Section 5.2.3),
SCIBORG enables the use of larger PKNs. To achieve this, we leverage the reconstruction
depth parameter (see Section 3.4.1). Recall that the reconstruction depth parameter
allows the algorithm to recursively search for predecessors until the fixed depth.
We test two values of the depth parameter: 0 and 2. Here, a depth equal to 0
signifies “infinite” depth, resulting in the reconstruction of the largest possible PKN
from the queried Pathway Commons database given a initial gene list. Throughout
the manuscript, the PKNs reconstructed with these parameters are denoted PKN 0
and PK N2, respectively. Afterwards, the PKN is reduced similarly to the previous

contribution (see Section 4.2.4.2).

In Section 5.3.2, we present the outcomes generated by the parameter value and
PKN reduction modifications. We also compare this new PK N % with the one previously
reconstructed (PKN?).

5.2.3 Pseudo-perturbation identification improvements

We refine the ASP program for the identification of pseudo-perturbations, allowing
us to retrieve more pseudo-perturbations in less time than the previous version. In the
remainder of this manuscript, we will refer to the first version of the ASP program,
presented in previous chapter in Section 4.3.1, as version v1. The new version of the ASP
program presented in this chapter will be referred to as version v2. In Section 4.2.5.1, we
introduce 3 constraints to identify pseudo-perturbations for v1. In this version v2 of the

program, we refine the first constraint and create a fourth one.

Problem statement We use a binary matrix F, where e;; represents the presence or
absence of gene j for cell . We denote by C' the set of cells and by G the set of genes. Each
cell in C'is associated with one class, either A or B; thus C' = A w B. We define the relation
19, 1%4¢) = {g; € Gle;; = 1}, where I(c;) represents the active genes, belonging to G,
for cell ¢;. If G' € G, then the restriction of I to G' is defined by [G’(CZ-) =% ) NG
Let us define the function type_of(g;), which provides the type of the gene g; that can be:
‘input’, ‘intermediate’, or ‘readout’. We define also the function parent(g;,g;), meaning

that a path exists from the g; to the gene g;, regarding the network topology of the PKN.
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Problem formulation Given a matrix F, a parameter k limiting the number of selected
genes, and a parameter [ giving the proportion of input genes in the & selected genes, find
a subset G' of genes and the largest subset C' (C" = A'wB' ¢ C, where A' ¢ A and
B' ¢ B) satisfying the following four constraints:

Constraint 1. The size of G is fixed to k, where |{g; € G, type_of(g;) = ‘input’}| = (,

Constraint 2. Ye¢i,co € A' (resp. B'), ¢1 # ¢, such that IG,(cl) # IG’(CQ).
Constraint 3. Y¢; € A' (resp. B'), ¢, € B' (resp. A'), such that IG'(cl) = [G,(CQ).

Constraint 4. Y g,, with type_of(g;) = ‘intermediate’, Ag,, with type_of(g,) = ‘input’,
such that parent(gs, g1).

Constraint justification

Constraint 1. This constraint reduces the search space to improve the computational
efficiency. We add a second parameter corresponding to the proportion of input genes in
the k selected genes. In others words, when we select k genes, we ensure that a proportion
[, where [ < k, are input genes. The remaining genes (k — ) will be intermediates. This
ensures that both input and intermediate genes are included in the k selected genes.

Constraint 2. The second constraint prevents redundancy within a same class by
forbidding cells from having the same gene expression for the k selected genes.

Constraint 3. The third constraint ensures a match between two identified cells from
different class, having the same gene expression for the k selected genes.

Constraint 4. The last constraint ensures connectivity between inputs and
intermediates. We add this constraint in order to have set of k genes that are connected to

each other and potentially yielding the inference of input-intermediate-readout connected
BNs.

5.2.4 Exploring equivalent solutions

The ASP program of pseudo-perturbation identification aims to maximize the number
of pseudo-perturbations, resulting in a solution comprising a specific number of pseudo-
perturbations for a chosen subset of k selected genes. It is important to note that this

solution is not unique. Indeed, other subsets of k£ genes could yield the same number
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of pseudo-perturbations. In such cases, the cells involved in pseudo-perturbations might
differ from those in the initial solution. However, all these solutions are equivalent and
could provide valuable insights. In Section 5.3.3.1, we consider equivalent solutions and

use them to infer BNs.

5.2.5 Cell classifier

Recall that the BN inference using Caspo is based on predicting readout expression
through the BN. The metric used for this prediction is the mean square error (MSE),
which represent the distance between readout prediction values and observed expression
values (see Section 3.4.2). We use this MSE metric to implement a cell classifier, aiming

to sort cells into a class or, in our case, a developmental stage.

Our classifier follows this procedure:

1. Distance computation: Considering two classes, A and B, for each class, the
algorithm computes the average MSE of readout predictions for the studied cell.
This yield two distances representing the discrepancy between readout predictions

and observations.

2. Classification: The algorithm assigns to the studied cell the class, either A or B,

with the smallest distance.

Given a set of cells we want to sort, we use the cell classifier and calculate the following

metrics:

o C(Class-specific accuracy: provides the percentage of accuracy (i.e., correct

classification) for a specific class.
e Global accuracy: provides the average accuracy between the two studied classes.

e Balanced accuracy (BAC): provides a balanced accuracy considering the number of

cells within each class.
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5.3 Results

5.3.1 ASP program

5.3.1.1 Detailed description of the pseudo-perturbation identification

program

In this section, we provide a step-by-step description of the version v2 program
of pseudo-perturbation identification. We compare each part of the program with the
corresponding part in the version v1.

Some rules and constraints are modified between the two versions. We also replaced
some choice rules with constraints that are less costly in terms of memory and computation
time. Recall that the program objective is to maximize the count of pseudo-perturbation
matches between different class cells, respecting rules and constraints outlined in
Section 5.2.3. Here, a match refers to identical Boolean expression values for a set of
genes between two cells from different classes. We refer to these Boolean values as a
pseudo-perturbation.

For a better visualization, we use two distinct background color for the following

program codes, a purple one for ¥2 and a blue one for v1 .

First, experimental data is formulated using pert/4 predicates, giving the expression
of a gene G at value S in cell C, linked to class C'L. The version v2 program starts by
selecting a set of [ input genes from all genes that are not intermediate ones using the line
v2_1. Line v2_ 2 selects a set of k — [ intermediates genes. Together, these rules ensure

respect for the Constraint 1 expressed in Section 5.2.3.

v2 1 {selinput(G) : pert(C,G,S,CL), not intermediate(G)} = 1.
v2 2 {selinter(G) : intermediate(G)} = k-1.

In contrast, the version vl selects k genes without any proportion of input or
intermediate (line v1_1), which can conduct to the selection of a set composed only

of inputs or intermediates.

vl 1 {selgene(G) : pert(C,G,S,CL)} = k.

Once genes are selected, we filter experimental data using the selpert/4 predicate.
For each selected input (resp. intermediate), a predicate is defined in line v2_3 (resp.
v2_4).
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v2 3 selpert(E,V,S,C) :- selinput(V), pert(E,V,S,C).
v2_4 selpert(E,V,S,C) :- selinter(V), pert(E,V,S,C).

Similarly, version v1 summarizes experimental data focusing on global selected genes
(line v1_2).

vl_2 selpert(C,G,S,CL) :- selgene(G), pert(C,G,S,CL).

Then, line v2_ 5 associates with the equal/3 predicate a pair of cells [ and J having
the same expression for the gene G (S1==82). Line v2_6 defines a potential match
(pot_match/2 predicate) between two distinct cells I and J (I!=]J) if there exist k genes
having the same expression for these two cells (equal/3 predicate). These cells should be
part of a different class (C1<C2). This rule means that cells involved in a pot_match/2
predicate could form a match because they have the same expression for the k selected
genes. A potential match could lead to a match or not. This is the purpose of the line
v2_ 7 where, given a pot_match/2 predicate, a match/2 can be inferred or not, via the
choice rule 0{...}1.

v2 5 equal(Il,J,G) :- selpert(I,G,S1,Cl), selpert(J,G,S2,C2), I!=],

S1=S2.
v2_6 pot_match(I,J) :- k = {equal(I,J, )}, selpert(I, , ,Cl),
selpert(J, , ,C2), Ci1<C2, I!'=J.

v2 7 O{match(I,J)}1 :- pot_match(I,J).

The version vl uses similar process. First, it calculates equal/3 predicates referring
to a pair of cells having similar expression for a given gene. Then, the program counts for
a pair of cells the number of genes where expression is identical for both cells (line v1 4).
It stores the value by inferring a countequal/3 predicate. Finally, a match/2 predicate is

inferred or not, for all pairs of cells where the similarity count is equal to k (line v1_5).

vl 3 equal(I,J,G) :- selpert(I,G,S1,Cl), selpert(J,G,S2,C2), C1<C2,
S1=S2.

vl_4 countequal(I,J,M) :- M = {equal(I,J, )}.

vl 5 O{match(I,J)}1 :- countequal(I,J,k).

Here, similar processes are used for both program versions. However, version v2 creates
a predicate of arity 2 (pot_match/2), while version vl employs a predicate of arity 3

(countequal/3). This bigger arity for v1 demands more resources in terms of execution
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and storage, rendering version v2 less ressource-intensive.

Afterwards, the v2 program handles data sparsity by defining nbInputOnes/2,
counting for a cell C involved in a match, the number of expressed input genes. With
the constraint line v2 9, the program forbids a match comprising a cell having less than
1 expressed input. Similar lines compose the v1 program (code not shown, please refer
to Program 4.1). Together, both programs ensure that each pseudo-perturbation has at

least one expressed input gene (referred to as Constraint 3 in Section 5.2.3).

v2 8 nbInputOnes(C,N) :- N = {pert(C,G,1, ) : selinput(G), input(G)},
match(C, ).
v2 9 :- match(C,_ ), nbInputOnes(C,N), N < 1.

Lines v2_ 10 to v2_ 13 answer to Constraint 2 of Section 5.2.3, by preventing potential
redundancies in a cell class. The objective is to forbid the selection of cells within the same
class having the same k-genes expression. For that, we implement two constraints (lines
v2_10 and v2_11) that forbid solutions where the same cell is present in two match/2

predicates, in the first class (resp. second class) with line v2_ 10 (resp. v2_11).

v2 10 :- match(I,J1), match(I,J2), J1!=J2.
v2 11 :- match(I1,J), match(I2,J), I1!=I2.
v2_12 :- pot_match(I1,J), pot_match(I2,J), match(I2,J), I1<I2.
v2_ 13 :- pot_match(I,J1), pot_match(I,J2), match(I,J2), J1<J2.

To better illustrate this, let us consider a toy example comprising 3 cells in class A
and 3 cells in class B following the “V-patterns” presented in Figure 5.2A. The cell al
may match with b1 and b2, and cell b3 may match with a2 and a3, representing in total
4 potential matches. Given the line v2_ 7, a potential match could infer a match for the
considered pair of cells. Thus, 2 1 possible solutions could be deduced. The additional
solution corresponds to the empty set, which signifies inferring zero matches. An example
of an induced solution could be the configuration where all 4 potential matches are inferred
as matches (Figure 5.2A). However, this configuration contains redundancies that must
be avoided. This is achieved with the constraints lines v2_ 10 and v»2_ 11 forbidding V-
patterns in all solutions. Therefore, the program generates 9 possible solutions having 0, 1

or 2 matches. We clarify this example pattern using an illustration notebook available via
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the link in footnote . In this notebook, we show the ASP results provided by the program
on the toy example of Figure 5.2A.

The two constraints in lines v2_ 10 and v2_ 11 prohibit redundancies of V-patterns;
however, one configuration does not comply with what is required. This configuration
is created when multiple cells within a class match with multiple cells within the other
class. We illustrate in Figure 5.2B the simpler case where 2 cells of a class have the same
k-gene expression of 2 cells of another class. In this case, we have 4 potential matches,
but we want to yield only one of them because they are all equivalent. After applying the
v2 10 and v2_ 11 rules, we obtain 2 patterns comprising 2 matches: the “parallel-pattern”
and the “cross-pattern”. To overcome this, we introduce two constraints (lines v2_ 12 and
v2_13). These two constraints are complementary. The first, in line v2_ 12, prohibits a
solution where 2 cells (/1 and 12) potentially match with a cell J and a match between
I2 and J is considered. The idea behind this is to only keep the match between I1 and J,
by filtering cross- and parallel-patterns of 2. The second, in line v2_ 12, is similar to the
first one, filtering cross- and parallel-patterns of the opposite symmetry. These constraints
reinforce to keep on this type of configuration (B), only 1 match: match(al,bl).

We illustrate these rules and constraints considering the configuration B in an online
notebook accessible via the link in footnote”. With this notebook, we can manipulate
rules and constraints with the proposed toy example and better understand the concepts.

Two remarks are necessary. First, if the constraints v2 12 and v2_ 13 are applied to
configuration A (V-patterns), only 1 solution will be admissible (out of the 9 possible after
v2_10and v2_11): {match(al,bl), match(a2,b3)}. Second, it is important to note that
our program is very constraining, drastically limiting the number of equivalent solutions.
While other possible matches between cells exist, they are redundant. We explore these
redundancies afterwards using a Python program in a later step called “readout difference

maximization” (see Chapter 4, Section 4.2.5.2).

Program v1 handles redundancies by identifying differences of expression (S1=182) for
the gene G between two cells 11 and 12 within the same class (C1==C2), referred as diff/3
predicate (line v1_8). It generates a predicate countdiff/3 for each pair of cells /1 and
I2 (line v1_9). Finally, combined line v1_10 and line v1 11, the program forbids the

1. https://mybinder.org/v2/gh/mathieubolteau/Bolteau_PhD_ Thesis Supplement/master - see
Notebook Illustration_5.1.ipynb. The web page may take a few minutes to load.

2. https://mybinder.org/v2/gh/mathieubolteau/Bolteau_PhD_Thesis Supplement/master - see
Notebook I1lustration_5.1.ipynb. The web page may take a few minutes to load.
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To avoid these two patterns, in »2_12, the program filters matches linked to 12 in
parallel- and cross-patterns. The following matches will be then filtered.
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In a symetric way, in »2_13, the program filters matches linked to J2 in parallel- and
cross-patterns. The following matches will be then filtered.

(al) @ ’,.. (b1)J1 (al) ——==-@ (bl)Jl
L d
I(a2) @rE————@ (b2)J2 I(a2) @ (b2) J2
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These rules, reinforce to keep on this type of configuration (B) only 1 solution:
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match/2

Figure 5.2 — Illustration of the Constraint 2.

(caption on next page.)
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presence of match/2 predicate where cell /1 and /2 have no gene expression differences
(countdiff (I1,12,0)).

vl 8 diff(I1,I12,G) :- selpert(I1,G,S1,Cl1), selpert(I2,G,S2,C2), C1=C2,
S11=82, Ti1<I2.

vl 9 countdiff(I1,I2,M) :- M = {diff(I1,I2, )}.

vl 10 :- countdiff(I1,I2,0), match(I1l, ), match(I2, ), I1<I2.

vl 11 :- countdiff(I1,I2,0), match( ,I1), match( ,I2), I1<I2.

Comparing v1 and v2 for the redundancies handling, the first version introduces 2 new
predicates that are costly for the solver, especially the countdiff/3 one which requires a
costly choice rule. Note that the grounder needs to enumerate all possible sets that respect
the rules in a choice rule, which is highly resource-consuming in terms of execution time
and storage. Version v2 uses only constraints that are not costly for the solver and allows

by filtering to improve the solving process.

The line v2_ 14 of the program v2 implements the Constraint j presented in
Section 5.2.3. The rule ensures to have, given a selected intermediate gene I, at least 1

selected input G topologically predecessor of I (parent (G,I)) using a choice rule 1{...7}.

v2_14 1{selinput(G) : parent(G,I), input(G)} :- selinter(I).

Finally, line v2_ 15 aims to maximize the number of matches comprising cells involved
in a pseudo-perturbation. The same computation is done in version v1, consequently we

do not show it here (refer to Program 4.1).
v2 15 #maximize{1, I : match(I, )}.

We provide in Program 5.1 the whole ASP program of the version v2. Without
considering the new parameter [ and the input-intermediate connectivity rule, version v2
contains 6 rules, including 4 choice rules, 5 constraints and 1 optimization, while version

vl comprises 8 rules, including 5 choice rules, 3 constraints and 1 optimization.

(continued from previous page.)

The Constraint 2 prevents redundancies in pseudo-perturbations through the lines v2_ 10 to v2_13 in
ASP program v2. Diverse patterns contain redundancies and need to be forbidden.

(A) Prohibition of V-patterns illustrated with a toy example.

(B) Prohibition of parallel- and cross-patterns illustrated with a toy example.
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1 {selinput(G) : pert(C,G,S,CL), not intermediate(G)} = 1.

2 {selinter(G) : intermediate(G)} = k-1.

3 selpert(E,V,S,C) :- selinput(V), pert(E,V,S,C).

4 selpert(E,V,S,C) :- selinter(V), pert(E,V,S,C).

5 equal(I,J,G) :- selpert(I,G,S1,Cl), selpert(J,G,S2,C2), I'!'=J, S1=S82.
6 pot_match(I,J) :- k = {equal(I,J, )}, selpert(I, , ,Cl),

selpert(J, , ,C2), C1<C2, I'=J.
O{match(I,J)}1 :- pot_match(I,J).
8 nbInputOnes(C,N) :- N = {pert(C,G,1, ) : selinput(G), input(G)},
match(C, ).
9 :- match(C, ), nbInputOnes(C,N), N < 1.
10 :- match(I,J1), match(I,J2), J1!=J2.
11 :- match(I1,J), match(I2,J), I1!=I2.
12 :- pot_match(I1,J), pot_match(I2,J), match(I2,J), I1<I2.
13 :- pot_match(I,J1), pot_match(I,J2), match(I,J2), J1<J2.
14 1{selinput(G) : parent(G,I), input(G)} :- selinter(I).
15 #maximize{l, I : match(I, )}.

Program 5.1 — Version v2 of the pseudo-perturbation identification

prograimn.

5.3.1.2 Identification of pseudo-perturbations across different datasets

We apply versions v1 and v2 on the five datasets A, B, C', D and SC' presented in
Section 4.2.3.1, Table 4.1. We show in Table 5.1 the obtained results regarding grounding
and solving steps. For the grounding, we analyze the computation time and the memory
size of this process. For the solving, we observe the solving time (for datasets C, D, we fix
a timeout) and the number of pseudo-perturbations found by the program. Additionally,
we compared the entire programs, noting that v2 includes additional rules to maintain
(1) a proportion of inputs and intermediates (k and [ parameters), and (i) a connectivity
between inputs and intermediates. Thus, the v2 program is more constraining, potentially
leading to a selection of pseudo-perturbations different from the v1 program.

We can observe that the grounding memory of vl is greater than v2. The significant

difference for large datasets (D, SC'), reaching a factor of more than 6 for D, is due to the
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Table 5.1 — Comparison of the two program versions
for identifying pseudo-perturbations.

Grounding Grounding Solving Pseudo-perturbations
Dataset k it Execution time Memory size Execution time count

vl v2 vl v2 v1 v2 vl v2

A 3 2 0.00s 0.01s 47 KB 26 KB 0.007s 0.009s 3 3

B 3 2 0.06s 0.06s 1.1 MB 451 KB 0.210s 0.060s 4 3

c 3 2 0.93s 0.26s 44 MB 6.2 MB 15min* 1.138s 7 6

10 6 1.09s 0.25s 44 MB 6.2 MB 15min* 15min* 10 13

D 10 6 23.27s 5.75s 1.2 GB 186 MB 15min* 15min* 27 35
SC 10 6 793.46s 304.40s 18.41 GB 4.83 GB 65h* 7h* 20 92

T Considered parameter only for version v2. * Execution time corresponds to the fixed timeout.

large quantity of ground predicates generated during the grounding process, mainly caused
by the choice rules of the v1 program. The grounding execution times are similar for small
datasets (A, B), while for the other datasets (C, D, SC), v2 is at least twice as fast as
vl. Despite the additional rules, v2 is less time-consuming than v1l. Regarding solving,
the execution times for datasets A and B are similar between the two versions. For the
artificial dataset A, both versions identified the same number of pseudo-perturbations.
For dataset B, where optimal results were found (no timeout), v2 identified one fewer
pseudo-perturbation than vl (6 vs. 7), due to the additional constraints in v2 on input
and intermediate composition. A similar difference is observed for dataset C' with k& = 3,
where v2 found the optimal number of pseudo-perturbations (6), while v1 identified a
suboptimal count (7 pseudo-perturbations, with a 15-minutes timeout). For dataset C'
with k£ = 10 and dataset D, v2 outperformed vl in the number of pseudo-perturbations
found. The results for dataset SC' are less comparable in terms of solving execution time;
however, v2 found 4 times more pseudo-perturbations than v1 (20 vs. 92) with significantly
less execution time.

To summarize, despite the additional constraints about the input-intermediate
composition, v2 produces similar or better results than v1, with a shorter computation

times, thereby significantly improving our overall method.

5.3.2 Reconstructed PKN

SCIBORG requires a PKN composed of signed interactions among genes representing
prior-knowledge. We reconstruct our PKN using pyBRAvo from a list of 438 genes (see
Appendix D), with the parameter exploration_depth = 0, indicating an “infinite” depth.
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Figure 5.3 — Reconstructed Prior Knowledge Network PK N 0,
A better quality version of the figure can be found in the Appendix F.

This PKN comprising 435 nodes and 719 edges. Along these nodes, we identify 229 input
genes, 66 intermediate genes, 21 readout genes and 119 protein-complexes. From the
438 genes given in input, 28 were retrieved within the PKN. After the reduction (see
Section 5.2.2), the PKN; called PKN', comprises 225 nodes and 369 edges (Figure 5.3).
More details on node composition are given in Table 5.2.

Table 5.2 — Comparison of the two studied PKN PKN? and PKN°.

PKN | #nodes* | #edges | #inputs | #intermediates | #readouts | #protein-complexes
PKN? | 191 (28) | 285 84 27 14 66
PEN° | 225 (28) | 369 85 36 19 85

* The value in parentheses corresponds to the number of genes given to pyBRAvo found in the PKN.

We compare PKN° and PKN? in Table 5.2. As expected, PKN'is larger than PKN?
in terms of number of nodes and edges. PK N % contains more prior knowledge allowing us
to model better the biological facts that occur during embryonic development. The 121
input and intermediate genes within PK N O form the entry of the pseudo-perturbations
identification program (see Section 5.3.3.1). Furthermore, we did not use PK N O with the

initial method version, using the ASP program v1, due to a scaling up issue that prevented
the use of a larger PKN.
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5.3.3 Experimental design construction
5.3.3.1 Pseudo-perturbation identification

Our ASP program requires two parameters to identify pseudo-perturbations. The first
is k, the number of input and intermediate genes we aim to select for establishing the

pseudo-perturbation. The second is the value [ fixing the number of input genes (I < k).

k parameter exploration Given the set of 121 input and intermediates genes in
PKN 0, we executed v2 ASP program with different parameters. We explored different
values of k ranging from 5 to 15. For each test, we fixed [ to constitute 60% of the k selected
genes, rounded down to the nearest whole number. The pseudo-perturbation identification
program was run on a computer cluster during 30h stopping the solving after this timeout.
The results are summarized in Figure 5.4A. We can observe that the number of pseudo-
perturbations fluctuates with k, reaching a maximal value of 92 pseudo-perturbations for
k = 10. This significantly increases the count of identified pseudo-perturbations compared
to the results obtained with v1 ASP program (see Section 4.2.5.1). In addition, we
calculated the cell representativity for each test, following Equation 4.3. Globally, cell
representativity decreases as k increases (Figure 5.4B). With Caspo, more experimental
data enable us to identify more regulatory mechanisms. Consequently, we select k£ = 10
and [ = 6 parameters. Although the outcomes for £ = 12 are also high in terms of
identified pseudo-perturbation number (87), our goal is to maintain the highest possible
representativity. Therefore, the results for k£ = 10 are more suitable for our purposes when
comparing the cell representativity of & = 10 and k = 12, which are 68.2% and 62.8%,

respectively.

Convergence of the solutions Although the results obtained after 30h of execution
for our selected parameters were promising, we extended our analysis further. We ran
the v2 program for 20 days, with £ = 10 and [ = 6, monitoring the number of pseudo-
perturbations identified by the program over time (Figure 5.5). As we stopped the program
after 20 days, the pseudo-perturbations found are suboptimal solutions.

We observed an exponential increase in the number of identified pseudo-perturbations
until a plateau was reached, with 96 identified pseudo-perturbations (consistent from day
7 to day 20). This convergence suggests that our results are probably close to optimality.
Across time, we select 5 key points, identifying 10, 43, 78, 92 and 96 pseudo-perturbations.

These key points are analyzed in detail in the following section.
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Figure 5.4 — Impact of k£ parameter.
The results were obtained after 30h of computation on a computer cluster.
(A) Identified pseudo-perturbations in function of k and I parameters.
(B) Identified pseudo-perturbations and the representativity score (see Equation 4.3) of these pseudo-
perturbations for a set of k values.
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Figure 5.5 — Convergence of the identified pseudo-perturbations over time.
The results were obtained using a computer cluster, as the complexity of the calculations makes it
infeasible to use a classical laptop.

Robustness of the solutions Recall that the ASP program identifies a given number
of pseudo-perturbations for a specific set of k genes. However, other k-genes sets can yield
the same number of pseudo-perturbations, which we refer to as equivalent solutions. We
explored these equivalent solutions for each previously mentioned key points. To do this,
we adapted the ASP program by fixing the number of pseudo-perturbation to identify
and enumerate the possible (equivalent) solutions. We ran the enumeration for 7 days,

stopping the program afterwards, yielding a (non-exhaustive) set of equivalent solutions
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(Figure 5.6).

Observing Figure 5.6A, we identify a convergence in the number of equivalent
solutions over time. Interestingly, there is a significant disparity in the number
of solutions when comparing #pseudo-perturbations = 10 (1,716,211 solutions) to
#pseudo-perturbations = 43 (2,179,441 solutions). One might expect the opposite
results: a larger number of equivalent solution for the first key point (10). However, it
is important to note that these numbers represent suboptimal values, as the calculations
were halted after a predetermined 7-day timeout. For the 96 pseudo-perturbations plateau,

2 equivalent subsets of k = 10 genes were observed.
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Figure 5.6 — Exploration of equivalent solutions and their gene composition.

This significant difference between the large quantity of equivalent solutions (more
than 1 million) at the beginning of the pseudo-perturbation search and the few remaining
solutions (only 2) could be explained by data sparsity. Due to the large number of zeros
in the data, the probability of finding, for instance, 10 cells where a gene is not expressed
(0) is high. In contrast, finding 96 cells (out of about 300) where a gene is not expressed is
much less likely. Consequently, the number of equivalent solutions selecting different sets
of genes could may grow exponentially for few pseudo-perturbations.

To address this issue, we implement a new constraint in the ASP program to forbid
this phenomenon. However, this constraint significantly slowed down the solving process.
Therefore, we decided not to include this constraint in the program.

This omission is not problematic because, for robust solutions (92 and 96 pseudo-
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perturbations key points), we did not observe any genes always expressed at 0 in the
pseudo-perturbations, indicating that our results are reliable.

In addition, we further analyzed the gene composition of these equivalent solutions,
counting the number of distinct genes in the equivalent solutions (Figure 5.6A). The
number of distinct genes decreased as the number of pseudo-perturbations increased.
Among the more than 2 millions of solutions for the 43 pseudo-perturbations key point,
only 34 different genes composed the subsets of k = 10 genes. For 96 pseudo-perturbations
key point, 9 out of 10 genes were common between the two solutions, with only 1 gene
differing: C210rf23 and FOS, respectively (Figure 5.6B).

Both the equivalent solutions and gene composition exhibit a refinement as the number
of pseudo-perturbations converges. The program found over 1 million equivalent solutions
when analyzing 10 pseudo-perturbations key point, but this number reduced drastically
to only 2 equivalent solutions when examining 96 pseudo-perturbations key point. These

outcomes demonstrate the robustness of our solutions.

Cell representativity of the solutions We calculate the cell representativity score for
the two solutions identifying 96 pseudo-perturbations (Table 5.3). Globally, the average
representativity of the two developmental stages equals 76% (resp. 71%) for solution
1 (resp. solution 2). Additionally, these two average values are greater than the one
obtained for 92 pseudo-perturbations during our k parameter exploration (68.2% ; see
Section 5.3.3.1). The cell representativity can be used as a metric to select between
equivalent solutions. Following this metric for the 96 pseudo-perturbations key point,
the solution 1 should be selected. However, we consider both solutions for the remaining

analyses, which are the readout difference maximization and the BN inference.

Table 5.3 — Cell representativity of solutions 1 and 2.

Solution ‘ M ‘ L™ (%) ‘ Total (%)
1 | 263 76% 253 (74%) | 516 (76%)
2 | 248 (T1%) | 235 (75%) | 483 (71%)

5.3.3.2 Computed experimental designs

As previously introduced, the data preprocessing step uses two readout normalizations:

the “min-max” normalization and the “arctangeant” normalization. We consider these two
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normalizations and compare them for the following analyses. Thus, for each normalization
and given the two equivalent solutions comprising 96 pseudo-perturbations for two distinct
sets of k genes, we maximize the readout differences following the process presented in
previous chapter (see Section 4.2.5.2). This step allows us to form, for each equivalent
solution, two experimental designs, each specific to the studied developmental stage.
These experimental designs are composed of 6 inputs, 4 intermediates and 19 readouts. In
Figure 5.7, we represent the experimental designs for the solution 1 to compare the two
considered normalizations. We present 5 cells involved in the 96 pseudo-perturbations,
where we describe the presence or absence of the inputs and intermediates, and plot the
evolution between medium and late TE of the expression of 7 readout genes involved in the
inferred BNs (see Section 5.3.4). In Figure 5.7A, we illustrate a part of the experimental
design using “min-max” normalization, while in Figure 5.7B, we present the “arctangeant”
normalization one. In these two partial experimental designs, the same genes and cells are
used, illustrating the variation in the evolution of readout gene expression between the two
normalization methods. We observe that more expression values are around middle values
for “min-max”, while “arctangeant” normalization values are closer to 0 or 1, consistent
with the normalization distributions discussed in Section 5.2.1 (Figure 5.1). Similar trends
are observed across the other cells among the 96 cells in pseudo-perturbations.

In addition, we conducted a similar analysis using solution 2 (see Appendix G). The
same observations can be made leading to the similar differences between the two studied

normalizations.

5.3.4 Inferred BNs

Considering both normalizations, we combined the reconstructed PKN (see
Section 5.3.2) with the experimental designs constructed for both solutions containing
96 pseudo-perturbations (see Section 5.3.3.2). Using Caspo, specific families of BNs
were inferred for the two solutions in order to model and distinguish medium and
late TE developmental stages. We set the parameters to fitness tolerance = 0.0001,
stze__tolerance = 0 and length = 2, similar to the approach used in the previous chapter
(see Section 4.3.3).

Comparison of normalizations In Table 5.4, we compare the BNs inferred for
solutions 1 and 2 across both normalizations, showing the MSE and the size of the optimal

learned BN, the number of learned BNs for both developmental stages. We also calculate
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Figure 5.7 — Partial graphical representations of experimental designs

discovered in solution 1 for both normalizations.

Only the 5 first cells involved in pseudo-perturbations are considered. Each row (left side) represents
an optimal pseudo-perturbation on the 10 selected input (green) and intermediate (red) genes. Binarized
vectors are illustrated using bars, where a black (resp. white) bar means the gene is active (resp. inactive).
On the right side, readout genes in blue, present in the inferred BNs (cf. Figure 5.8), are shown. In each
box, the curve represents the normalized readout gene expression evolution between the medium TE (M,
left) and late TE (L, right) developmental stages.

(A) Representations for “min-max” normalization.

(B) Representations for “arctangeant” normalization.

the accuracy, obtained from the cell classifier method (see Section 5.2.5), on the 192
(96 + 96) cells involved in pseudo-perturbations, for each stage.

The “min-max” normalization identifies a single medium TE BN for both solutions.
The number of BNs increases significantly for late TE, with 1,496 and 199 BNs for
solutions 1 and 2, respectively. This larger BNs count for late TE indicates a greater

complexity in regulatory mechanisms required to model this stage. Similarly, the size (i.e.,
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Table 5.4 — Comparison of normalizations
with solution 1 and 2 inferred BN characteristics.

Medium TE Late TE
Normalization | Solution MSE  Size #BNs Accuracy MSE  Size #BNs Accuracy
(training set) (training set)
“minomax” 1 0.1153 1 1 33% 0.1413 12 1,496 29%
2 0.1180 1 1 52% 0.1400 5 199 11%
“qret ¢ 1 0.2218 23 1 64% 0.2416 15 2 81%
arctangean 2 0.2242 21 214 79% | 02516 16 70 51%

The accuracies was calculated with cells from the cells involved in pseudo-perturbations used for the BN
inference, i.e., learning set (see Section 5.3.5).

the number of Boolean gates in the network) is larger for late TE (12 and 5) compared
to medium TE (1 for both solutions). For both solutions, gene expression observations
are more complex to model for late TE, as indicated by the MSE, which quantifies the
difference between data and model predictions. The inferred BN for medium TE (for both
solutions) is particularly simple, consisting of only one link between two genes, making
the model poor and less representative (see Figure 5.8B). In addition, the accuracies are
very low, meaning an incorrect classification for a large majority of considered cells.

Given the “arctangeant” normalization, the second set of k genes (solution 2) allows
the identification of a larger number of BNs than solution 1: 1 BN vs. 214 BNs and 2 BNs
vs. 70 BNs for solution 1 and 2, respectively. We observe a similar trend for the MSE: late
TE has a larger MSE than medium TE for both solutions. In contrast, the size of BNs is
larger for medium TE. The calculated accuracies are high, going to a maximal value 81%
for late TE, solution 1.

As far as MSE is concerned, the order of magnitude is the same for both solution,
regardless of the normalization method. However, MSE increases for “arctangeant”
normalization: 2 times higher for medium TE and approximately 1.7 times higher for
late TE compared to the “min-max” normalization. A first explanation is the number
of readout in inferred BNs and thus the values to fit. For instance in solution 1, the
number of readout in “min-max” BNs is equal to 1, while for “arctangeant” BNs this
number is 5. Fitting the values of 5 readouts is significantly more challenging than fitting
1 value, resulting in larger MSE. The second explanation involves incorrect predictions
made through the BNs. In these cases, the distance between the observed value and
the prediction will be smaller for “min-max” normalization, than for “arctangeant” one,

leading to a smaller MSE for “min-max” normalization. For instance, if the prediction

108



5.3. Results

through the BN is equal to 0 and the observed value is around 1 for the “arctangeant”
normalization and around 0.5 for the “min-max” normalization, the distance for “min-
max” normalization will be smaller, yielding a smaller MSE. These reasons could explain
the larger MSE for “arctangeant” normalization.

Additionally, we observe that size values raise between medium to late TE for “min-
max” normalization, while, a reduction is observed for “arctangeant” one. The number of
BNs increases from medium to late for “min-max” normalization, but this trend is not as
clear for the second normalization, and even reverses for solution 2 (214 vs. 70 for medium
and late TE, respectively).

Furthermore, if we take cells used for the BN learning individually and compute
the sorting using the cell classifier (see Section 5.2.5), we observe higher accuracies for
“arctangeant” normalization (72% and 65%, for solutions 1 and 2, respectively) compared
to the “min-max” normalization (33% and 32%, for solutions 1 and 2, respectively).
These outcomes reinforce the robustness of “arctangeant” normalization. That is why we
analyze in detail, in the following section, the inferred BNs obtained with “arctangeant”

normalization.

Analysis of the inferred BNs obtained with “arctangeant” normalization As
the cell representativity of the solution 1 is the greater (see Section 5.3.3.1), we analyze
the BN families of this solution (Figure 5.8A). We can observe mostly genes involved in
both BN families. More interactions are needed to model medium TE, as indicated by the
larger size. These interactions are always necessary because Caspo learns only 1 BN for
medium TE, while for late TE, alternative regulation mechanisms are possible, especially
the inhibition of DDIT3, that can be mediated by MYC or through the MYC/Max/MIZ-1
complex. Caspo models late TE with one additional readout (CEBPD) compared to
medium TE. Additionally, we show the BNs obtained for “min-max” normalization in
Figure 5.8B, reinforcing the better significance of “arctangeant” normalization results.
In summary, medium TE needs more diverse mechanisms to be modeled. For instance,
an additional regulation cascade can be observed for CEBPB, involving a pathway from

JUN and passing through C210rf23 or JUN/JUND.
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Figure 5.8 — Boolean networks families for solution 1.
Each network represents the union of (sub-)optimal Boolean networks (BNs) learned from the reduced
PKN and the experimental design. The colored nodes represent genes associated with experimental
designs, including input and intermediates involved in pseudo-perturbations, and readout genes. The
width of the arcs represents the frequency of occurrence of this arc in the BNs. We set the following
parameter values: fitness_tolerance = 0.0001, size_tolerance = 0 and length = 2.
(A) BN families inferred for “arctangeant” normalization.
(B) BN families inferred for “min-max” normalization.

5.3.5 Cell classifier results

Here, we consider 2 sets of cells to classify: the “training set” and the “testing set”.
The first one contains the cells involved in pseudo-perturbations used for the BN learning.
The testing set is divided in two parts. The first part, called “testing set 17, includes
redundant cells exhibiting identical gene expression profiles to the pseudo-perturbation

set. These cells are closer to the learning cells in terms of gene expression because they
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have the same expression values for the input and intermediate genes. The second part,
called “testing set 2”7, comprises the remaining cell population, excluding those involved
in pseudo-perturbations or redundancies.

We employ our cell classifier on both solutions 1 and 2, utilizing both normalizations
“min-max” and “arctangeant”. The results are summarized in Table 5.5. A significant
difference between the two normalizations is observed across all solutions, with
“arctangeant” normalization demonstrating an approximate two-fold improvement. These
findings reiterate the robustness of “arctangeant” normalization compared to “min-max”,
when using this data as input to Caspo.

Focusing solely on “arctangeant” normalization, the training set exhibits a higher BAC
than the testing set, with values of 72% vs. 67%/68% for solution 1. Similar results are
obtained for solution 2: 65% vs. 58%. These outcomes are consistent, as models tend to
perform better with training that is more similar to the model itself, than testing data.

However, this trend is not observed with “min-max” data.

Table 5.5 — Cell classifier results on solutions 1 and 2
considering the two normalizations.

Training set Testing set 1 Testing set 2

Normalization|Solution

Global BAC Medium TE Late TE| Global BAC Medium TE Late TE| Global BAC Medium TE Late TE

accuracy accuracy accuracy |accuracy accuracy accuracy |accuracy accuracy accuracy
i 1 33%  33% 38% 29% 36%  35% 19% 22% 30%  30% 35% 24%
2 32% 32% 52% 11% 33% 32% 55% 10% 29% 29% 45% 13%
Carctanzeant” 1 2%  72% 64% 81% 66%  67% 52% 82% 68%  68% 62% 73%
& 65% 65% 79% 51% 58% 58% 59% 57% 58% 58% 68% 47%

Based on this accuracy metric, solution 1 appears superior. This solution demonstrates
higher accuracy, particularly for testing set. Notably, it achieves an approximate 10%
improvement in accuracy for this solution. This suggests that the inferred BNs effectively
model cells with significant differences compared to the training set.

We examine the predictions for each individual cell in solution 1 in more detail.
In Figure 5.9, we represent the calculated MSEs through medium TE BNs versus the
calculated MSEs through late TE BNs for each cell within the three sets of cells: learning
set (Figure 5.9A), testing set 1 (B) and testing set 2 (C). For each set, we represent all
cells across both classes (medium and late TE) in function of their medium and late TE
MSE:s in the left plot. The two plots on the right are subplots of the first one, considering
cells from only one class. Given these plots, we can observe whether the classification of a

cell is correct or not, based on its position on the plot. If the cell is below the dashed line,
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it is classified in the medium TE group; otherwise, it is classified in the late TE group.

Considering the testing set, we observe that most of misclassified medium TE cells are
farther from the dashed line than the misclassified late TE ones (Figure 5.9A). The same

observations can be made for the learning set 1 (Figure 5.9B). This signifies that medium

TE BNs have more difficulties identifying medium TE cells. In contrast, for testing set 2,

we observe a larger distance for misclassified cells in late TE compared to medium TE.

This suggests that late TE struggle to identify cells that are far from the training data.

Late TE MSE

(A) Results for training set (96 and 96 in medium and late TE class, respectively).
(B) Results for testing set 1 (167 and 96 in medium and late TE class, respectively).
(C) Results for testing set 2 (85 and 79 in medium and late TE class, respectively).
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Figure 5.9 — MSE scores of individual cells for the solution 1.

Left plot represents the medium TE MSE in function of the late TE MSE. The two plots on the right are
subplots of the left plot, considering cells from only one class. MSE values in negative logarithmic scale.
A high value in this scale signifies a small MSE, meaning a good prediction.
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5.4 Discussion and conclusion

Understanding regulatory mechanisms involved in developmental stages and leading to
cell fate decision is a complex research field, particularly in the study of human embryonic
development. In Bolteau et al. [5] and in Chapter 4, we presented a method allowing us
to identify pseudo-perturbations, since classical perturbations are unavailable due to legal
and experimental concerns. Given these pseudo-perturbations, we inferred two families of
Boolean networks (BNs), each modeling one of the studied developmental stages: medium
trophectoderm (TE) and late TE. This method faces limitations such as computational
constraints. To overcome these issues, we improved our previous method and introduced

SCIBORG, which addresses the aforementioned issues and further analyzes our findings.

In SCIBORG we improved the vl ASP program (from Chapter 4) for identifying
pseudo-perturbations yielding better results while requiring less computation memory
and time. This improvement allows us to consider larger input PKNs, permitting
the incorporation of more prior knowledge. Additionally, we explored a readout gene
expression normalization framework using an arctangeant function and compared it
with the initial “min-max” normalization. We delved deeper into the identified pseudo-
perturbations by exploring equivalent solutions for a certain number of identified pseudo-
perturbations. We also introduced a cell classifier aimed at sorting a given cell into
the developmental stage that is closest to the cell’s gene observations. Compared to
our previous outcomes, in this study, we worked with a larger prior knowledge base,
comprising 42 additional genes and 84 additional interactions. The improved v2 ASP
program enabled the identification of 92 pseudo-perturbations for 7 hours of computation,
compared with previously 20 pseudo-perturbations found in 65 hours. Thus, the v2 ASP
program increased the number of pseudo-perturbations by a factor of 4.6 while reducing
the computation time by more than 50 hours. We identified a convergence of the number of
pseudo-perturbations until a plateau comprising 96 pseudo-perturbations. This number
of 96 pseudo-perturbations demonstrates robustness since (i) two equivalent solutions
are found, (7i) the composition of genes forming these solutions comprises 9 (out of 10)
identical genes, and (7ii) the cell representativity of pseudo-perturbations is approximately
70%. The new “arctangeant” normalization enables the learning of more informative BNs

" until then used. Finally, the cell classifier provides interesting

compared to “min-max’
results and forms a tool for classification of new cells. The inferred BNs exhibit more

complex regulations mechanisms for medium TE than for late TE (size 23 vs 15). More

113



Chapter 5 — Contribution 2: More robust inferred Boolean networks using SCIBORG

genes seem to be involved in the medium TE stage.

Although we applied SCIBORG to distinguish medium TE and late TE, we consider
that our method could be applied to other developmental stages. Our methodology could
also be used to understand regulatory mechanisms in other biological fields. Other PKNs
could be used as input; if a PKN already exists in a particular domain, this should only
improve the regulatory mechanisms identified in the BNs. Furthermore, our method is
complementary to modeling approaches using single-cell transcriptomic data and model
cell differentiation [61, 66]. Our method considers all cells of the population and their
regulatory mechanisms for studied developmental stages. SCIBORG infers robust and

exhaustive BNs, providing insightful inputs for biologists.
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CHAPTER 6

DISCUSSION AND PERSPECTIVES

“Science knows no country, because knowledge belongs to humanity,
and is the torch which illuminates the world.”
— Louis Pasteur (1822-1895)

This chapter provides an overall discussion of the work conducted during this

thesis. It concludes by outlining the future perspectives of this research.

Summary

6.1 Discussion . . . . . . . . . 115
6.1.1 Data preprocessing . . . . . . . . .. ... 116
6.1.2 PKN reconstruction. . . . . . . ... .. .. 117
6.1.3 Usage of other PKNs . . . . . . . . .. ... ... ... ... ... 118
6.1.4 Improving readout maximization step . . . . . . . .. ... .. ... 118
6.1.5 Caspo’s parameters . . . . . . . . . . .. ... 118
6.1.6 Improvement of inferred BNs . . . . . ... ... ... ... 119
6.1.7 State-of-the-art methods . . . . . . . . ... ... ... ... .... 119
6.2 Perspectives . . . . . . .. 120
6.1 Discussion

In this manuscript, we presented two contributions leaded in this thesis. The first one

introduces a method of Boolean network (BN) inference aiming to model two stages of

human embryonic development. In the second contribution, we outline enhancements

leading to exhaustive enumeration and optimal families of models, allowing us to

distinguish medium and late trophectoderm (TE) developmental stages. The assembly
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of these two contributions led to SCIBORG, an original tool that allows to highlight the
main mechanisms involved in the human embryonic development. SCIBORG is available
as a Python package, which can be accessed through the following GitHub repository:
TODO.

SCIBORG consists of three steps: (i) prior knowledge network (PKN) reconstruction,
(7i) experimental design construction, and (%i) BN inference. First, the PKN
reconstruction calls a tool which queries the Pathway Commons database in order
to reconstruct a gene interaction graph constituting our prior knowledge. Second, to
construct stage-specific experimental designs, we first use an ASP program to identify
pseudo-perturbations. Then, we aim to maximize the readout differences across cells
selected by the pseudo-perturbations. Third, given the PKN and experimental designs,
we use a tool encoded in ASP to infer BNs that are both compatible with the gene
interactions into the PKN, and the gene expression present in experimental designs.

Applied to medium and late TE stages, SCIBORG allows us to identify a PKN
comprising 233 genes and protein-complexes, and 369 gene interactions. Our pseudo-
perturbation identification program enables the identification of 96 pseudo-perturbations
in both studied stages. Exploring the pseudo-perturbation equivalent solutions, we found
two solutions composed of two subsets of 10 genes allowing the identification of 96
pseudo-perturbations; that is, 96 cells in each line which expression profile allowed us
to differentiate medium and late TE stages. We consider two readouts normalization
methodologies and identify that “arctangeant” normalization enables the learning of more
robust and pertinent results. In the third step, we learned two families of BNs modeling
medium and late TE. We identify different regulatory mechanisms, specific to the studied
stages. Furthermore, our inferred BNs permit the introduction of a cell classifier, aiming
to sort a cell into the closer stage, giving its gene expression.

Ultimately, the findings of the second contribution, presented in Chapter 5, will be

compiled into a scientific article and submitted to an international journal for publication.

6.1.1 Data preprocessing

In the preprocessing step, the data is either binarized, for input and intermediate
genes, or normalized for readout genes.

We use a simple binarization method, considering a gene to be expressed if at least
two reads are observed in the cell. However, this approach is open to discussion. Exploring

different threshold values could be interesting to see if they impact the binarization results.
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In addition, other binarization methods exist, such as PROFILE [8] used in BoNesis, or
RefBool [9]. These methods, however, may assign intermediate expression levels to certain
genes, or discards some genes. Applying these methods as they are could potentially result
in excluding certain genes or cells (where a gene is not considered), which cannot be
managed yet in SCIBORG.

Regarding the readout normalization, the methodology used significantly impacts the
inferred BNs (enhancement of two fold increase in accuracy when comparing “arctangent”
normalization to “min-max” normalization.). The “arctangeant” normalization provides
more robust and pertinent BNs. Nonetheless, other normalization methods could be

explored further to potentially yield better results.

6.1.2 PKN reconstruction

Our PKN reconstruction method leverages pyBRAvo which queries Pathway
Commons, a resource grouping multiple databases. Pathway Commons includes
KEGG [10], the database used in the study by Chebouba et al. [11], which allows us
to incorporate more prior knowledge than that used in their study. We opted to use
an external database to reconstruct the PKN instead of a PKN inference method using
scRNAseq data, such as LEAP (see Chapter 2, Section 2.4), because the PKN inferred
from these methods may be biased by the data.

pyBRAvo proposes to reconstruct two types of graphs: gene regulation networks
(GRNs) or signaling networks (SNs). In SCIBORG, we use the regulation option to focus
on GRNs. However, considering the signaling option could be beneficial. Even though SNs
contain signaling information, treating them as PKNs might yield different and potentially
interesting results.

Furthermore, our reconstructed PKNs include numerous gene interactions derived from
cancer analysis data. However, the mechanisms involved in cancer differ from those in
embryonic development, a concern that needs to be addressed. A potential solution could
be using the DoRothEA database [12], as employed in BoNesis. This database contains
interactions with varying confidence levels, from high confidence (curated interactions) to
low confidence (predictions), thus necessitating cautious use. Another option is to use an
inference method based on scRNAseq data, always mindful of the potential data bias in
the PKN.

Lastly, we reconstruct two different PKNs (PKN° and PKN?), which vary in size.
It was observed that the larger PKN, PKN O, yielded more relevant inferred BNs (see
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Chapter 5, Section 5.3.4). Despite the increase in size, SCIBORG was able to handle this
problem effectively.

6.1.3 Usage of other PKNs

It is important to note that the PKN reconstruction step is optional in SCIBORG.
Users possessing a PKN tailored to their specific case study have the flexibility to utilize
it and execute the subsequent method steps. Our approach aims to be as adaptable as

possible to accommodate different user-specific PKNs.

6.1.4 Improving readout maximization step

The readout difference maximization is implemented in Python and takes place
after the pseudo-perturbation identification in ASP. The algorithm is straightforward,
calculating pairwise differences in cell redundancies (see Chapter 4, Section 4.2.5.2). While
one could consider enhancing this process with other algorithms, it was not a priority since
the execution time is reasonably short (less than 5 minutes on a laptop).

Another option would be to incorporate additional constraints into the pseudo-
perturbation identification ASP program, in order to maximize readout differences directly
in the ASP solving process. However, this approach would be very resource-intensive,
significantly complicating and lengthening the search for pseudo-perturbations.

Furthermore, we employ a maximization of the readout differences to handle cell
redundancies, aiming to achieve the largest difference between the two studied stages
and potentially better distinguish them. However, other criteria could be considered.
We explored an “average readout” value criterion, which involves computing the average
readout values of all redundant cells. The learned BNs obtained with this criterion were
not significantly different from those obtained with the difference maximization approach,
leading us to retain the latter in SCIBORG.

6.1.5 Caspo’s parameters

To infer Boolean networks through Caspo, we used various parameters.
The first parameter considered is the fitness tolerance, which aims to provide tolerance
in terms of MSE for learning BNs. In our two contributions, we fix the fitness tolerance

value to fitness tolerance = 0.0001, allowing exploration beyond the optimal BN up
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to a distance of 0.01% from the optimal MSE. We chose this value because is the one
providing in average the more pertinent BNs.

The second parameter is the size tolerance, which sets a tolerance level to explore BNs
with a number of nodes ranging from the optimal size up to a user-defined maximum
tolerance added to the optimal number of nodes. We opted not to provide tolerance in
terms of size because our goal is to find minimal Boolean models.

The third parameter is the length, which restricts the number of incoming interactions
in an “AND” logical gate. We set this length to 2 in order to simplify regulatory
mechanisms being inferred, thereby reducing problem complexity.

Exploring these parameters more deeply by testing various values could potentially

yield more robust outcomes.

6.1.6 Improvement of inferred BNs

The composition of inferred BNs are sometimes unsatisfactory. In our first
contribution, the learned BNs included intermediates directly connected to readouts (see
Chapter 4, Section 4.3.3), which is not biologically informative. To address this issue,
we incorporated additional constraints in the pseudo-perturbation identification ASP
program (v2) of SCIBORG, in order to select inputs and intermediates that are connected
(see Chapter 5, Section 5.2.3, Constraint 4 ). This approach enabled the inference of more
relevant BNs.

However, the learned BNs remain disconnected when using “arctangeant”
normalization (see Chapter 5, Section 5.3.4). To infer more connected BNs, which include
“cascades” from inputs to readouts via intermediates, the ASP program of Caspo needs to
be modified at its core. This task is challenging as it requires a thorough understanding of
each ASP rule to make the necessary modifications, but it may lead to more meaningful

results, which is invaluable for modeling.

6.1.7 State-of-the-art methods

The modeling methods using SMT or ASP enumerate a massive quantity of possible
models. State-of-the-art methods address this explosion of solutions by sampling models
(BoNesis or RE:IN), or relying on experiments. In contrast, SCIBORG enables the
identification of equivalent models over time (see Chapter 5, Section 5.3.3.1). We

demonstrate that the number of possible models is very limited. Compared to state-
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of-the-art methods, our solution space is more restricted, with only 2 models versus some
hundreds or thousands. These outcomes provide a high level of confidence in our results
and strongly support the directed experimental validation of our models.

Furthermore, we observe that SCIBORG considers cell heterogeneity through the
identification of several cells (around 100) within each class. For each cell, we consider a
screen of approximately 30 genes, which expression profile enables us to learn the BNs. In
contrast, BoNesis works with an average of cells within a class, while RE:IN uses bulk data.
SCNS considers single-cell data over a window of approximately 40 genes; however, it does
not handle redundant expression across cells. Accounting for cell heterogeneity enables
SCIBORG to consider the redundancies commonly present in single-cell transcriptomic

data, a factor that is not taken into account in other state-of-the-art methods.

6.2 Perspectives

The work led during this thesis is a significant step forward in modeling human
embryonic development. Although our research focused on the modeling of medium and
late trophectoderm (TE), there remain numerous areas to be explored.

Firstly, we plan to analyze other developmental stages involved in the human
preimplantation development. The immediate goal is to continue the exploration of TE
maturation by including early TE, a phase occurring before the others. Following this,
we aim to extend our analysis to other developmental stages to investigate the other cell
fates: primitive endoderme (PrE) and epiblast (EPT).

Secondly, we plan a deeper investigation of the cell classifier proposed with SCIBORG
to sort cells into their corresponding stages. This tool could assist in classifying undefined
cells exhibited in the analyses conducted by Meistermann et al. [13] (see Chapter 3,
Section 3.2). To achieve this, we need to explore neighboring stages of these cells,

particularly focusing on EPI and PrE, which ties into the previous point discussed.

The inferred BNs could be challenged through simulation, such as deactivating a gene
and observing the resulting behavior of the BNs and gene expression. This powerful
approach would facilitate in silico predictions, providing valuable insights and potentially

guiding experimental validation.
In parallel with the computational models we infer, cellular models, particularly
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blastoids (see Chapter 1), are promising tools for computation models validation with
less legal constraints. Blastoids could be very useful for providing in vitro validation of in

silico simulations and thus confirming posed hypotheses.

Furthermore, we plan to apply SCIBORG on other biological studies. We are
collaborating with a group at the CRCI2NA laboratory in Nantes, who are working on
inner lymphoid cell development. Their aim is to understand gene regulatory mechanisms
involved in this cell differentiation. SCIBORG could be instrumental in identifying

unknown mechanisms in this process.

Ultimately, SCIBORG facilitates the static modeling through the inferred BNs. An
intriguing direction for future work is the modeling of the dynamic processes occurring
during the embryonic development. For this purpose, an extension of Caspo, known as
Caspo Time Series (Caspo-ts) [14], could be employed. Given a prior knowledge network
(PKN) and time series data, which could be inferred from pseudotime gene expression in
our case, Caspo-ts infers BNs that are compatible with both gene interactions defined in
the PKN, and the gene expression patterns identified in time series data.

Preliminary work has been conducted by students I co-supervised with Carito
Guziolowski, exploring this approach and yielding promising findings. This perspective
forms the basis of a new Ph.D. thesis set to start shortly. I am very happy to see that the

work conducted during my thesis will be continued and expanded upon.
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APPENDIX A
TECHNICAL SPECIFICATION SHEET OF
SCENIC

SCENIC (single-cell regulatory network inference and clustering) [51] is a workflow
designed to infer GRNs and identify cell states from scRNAseq data. This method
combines gene interaction data with transcription factor (TF) binding motif enrichment,
enabling the discovery and characterization of cell states.

SCENIC consists of three steps (Figure A.1):

1. Co-expression identification: Similar to WGCNA, SCENIC identifies set of co-
expressed genes using the GENIE3 algorithm [102]. From gene expression and a list
of TFs of interest, the algorithm identifies modules which are sets of TFs co-expressed
with their targets (Figure A.la). However, like WGCNA, this genes modules, based

only on co-expression, may include many false positives.

2. TF-motif enrichment analysis: The RcisTarget program is used to analyze TF-
motif enrichment and identify direct targets. This step retains only modules where
the TF motif is enriched, forming what the authors called requlons (Figure A.1b).

Together, modules and regulons are used to form the GRN.

3. Regulon activity calculation: The activity of each regulon is calculated for
each cell using the AUCell algorithm (Figure A.1c). The calculated scores can be
represented as a regulon activity matrix. By applying a threshold, it is possible
to determine in which cells each regulon is “on”. Additionally, the regulon activity

matrix can be used to cluster cell and potentially identify cell types (Figure A.1d).

In summary, SCENIC models pairwise relationships between genes using co-expression
correlations. Gene correlations are filtered using a TF enrichment to retain only TFs and
their predicted targets in the final GRN. The method also proposes cell type-specific GRNs
by exploring the regulon activity. By using TF binding motifs from database, SCENIC

can infer directed GRNs, showing the impact of TFs on their targets. In theory, repressive
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interaction can be detected via the enrichment; however, this remains challenging for
certain data [51].

Co-expression Motif discovery Cell scoring Clustering
a Tool: GENIE3 / GRNBoost b Tool: ReisTarget ¢ Tool: AUCell d Tool: t-SNE Hierarchical clustering /...
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Figure A.1 — The SCENIC workflow.
(a) GENIE3 is used to infer co-expression modules between transcription factors (TFs) and candidate
target genes.
(b) Each co-expressed module is analyzed using ReisTarget to identify enriched TF-motifs. Only modules
and targets for which the TF-motif is enriched are retained, forming together regulons.
(¢) The AUCeIl algorithm calculates the activity of each regulon for each cell, forming a regulon activity
matrix. This matrix can be binarized using a threshold in order to, for each regulon, determine in which
cells the regulon is “on”.
(d) The regulon activity matrix can be utilized to cluster cell (e.g., t-SNE) and potentially identify cell

types.
Figure from Aibar et al. [51].
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APPENDIX B
TECHNICAL SPECIFICATION SHEET OF
LEAP

LEAP (lag-based expression association for pseudotime-series) [55] is a method for
inferring gene co-expression network from pseudotime trajectories. It calculates the
co-expression while accounting for potential lags in time present in scRNAseq data,
acknowledging that gene relationships may vary over time. Overall, the method consists

of two main steps (Figure B.1):

1. Pseudotime trajectories calculation: Pseudotime trajectories are calculated to
order cells. LEAP requires the user to provide the time ordering of cells, for instance,

using Monocle (Figure B.1i).

2. Gene correlation calculation: LEAP divides the data in small time windows
representing all possible time lags. For each possible time lag, gene correlations
are computed, resulting in a series of correlation matrices (Figure B.1lii). These
multiple correlations matrices are then merged using Pearson correlation, enabling
the inference of temporary correlations between genes. Finally, multiple correlations
are aggregated into an adjacency matrix indicating the sign of correlation between

genes (Figure B.1iii). This matrix can easily be transformed into a GRN.

In summary, LEAP allows researchers to capture pairwise relationships between
genes using scRNAseq, constructing a GRN that accounts for hidden associations due
to time lags. The pseudotime trajectories enable the computation of non-symmetric
correlation, providing the ability to predict directed GRNs. The method’s output can

help in understanding complex processes involved in cell fate decisions for instance.
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Figure B.1 — Workflow of GRN inference method
based on pseudotime ordering (LEAP).

(i) The pseudotime trajectories are calculated from scRNAseq, providing an ordering of cells.

(ii) Data is divided into small-time windows, and the algorithm calculates the gene correlation for each
time window.

(iii) The method merges multiple correlation matrices into one adjacency matrix, which can be then
transformed into a GRN.

Figure from Nguyen et al. [50].
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AprpPENDIX C
TECHNICAL SPECIFICATION SHEET OF
WGCNA

WGCNA (weighted gene co-expression network analysis) [71] is a widely used approach

for exploring relationships between genes with similar expression patterns. Its goal is

to identify pairwise correlations across transcriptomic data to find co-expressed genes

grouped into modules. The output is a gene co-expression network where nodes represent

genes, and edges represent pairwise correlations between gene expressions. Briefly, the

method comprises three main steps (Figure C.1):

1. Correlation matrix construction: A correlation matrix is created from gene

expression data using a similarity measure such as Pearson correlation. The
algorithm calculates correlation between every pair of genes. This output matrix
can be represented as an unsigned graph, with nodes as genes and edges weighted

by correlation intensity (Figure C.1a).

. Thresholding: A threshold is applied to retain high correlations and remove
weak connections, resulting in a simplified network of strong gene connections
(Figure C.1b).

. Module identification: The algorithm identifies gene modules using a network
proximity measure. A distance matrix between genes is calculated to identify
clusters, which form the gene modules (Figure C.1c). Within each module a hub
gene can be identified, corresponding to a gene highly connected to others module

genes.

In summary, WGCNA is an unsupervised method that identifies gene modules from

the expression data using clustering techniques. These modules can be enriched by gene

ontology information to identify potential biological pathways for instance. Additionally,

hub genes within modules can serve as candidate biomarkers. Various studies have
identified potential biomarkers using WGCNA [103, 104]. However, the lack of causal
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regulatory links proposed by this method can lead to a high number of false positives

[49].

O Gene

@ Hub gene of a module
— Correlation link

\H/ Module

Figure C.1 — Schematic diagram of the WGCNA algorithm.
(a) The correlation matrix can be represented with an unsigned graph where nodes are genes. The
correlation intensity is indicated by the weight of the edge between two genes.
(b) Correlation values below a threshold are removed, simplifying the graph to include only strong
connections.
(¢) The graph is partitioned to identify gene modules composed of highly correlated genes. For each
module, the algorithm highlights a hub gene (in red), which is a gene highly connected with the other
genes in the module.
Figure adapted from Meistermann [4].
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APPENDIX D

TRANSCRIPTION FACTORS LIST

Below we list the transcription factors used as input of pyBRAvo tool for the PKN

reconstruction (see Section 4.3.3, PKN reconstruction).

ACO1
AKRI1A1
ANXA1
ANXA11
ARG2
ARID5B
ASH2L
ATF2
BACH2
BARHL2
BARX1
BARX2
BATF
BCL11A
BCL3
BHLHE40
CARF
CBFA2T2
CCDC25
CDX1
CDX2
CEBPA
CEBPB
CEBPD
CELF5
CERS2
CERS3
CERS6
CLOCK
CPEB1
CREB5
CREBL2
CTBP1
CTCFL
CTNNB1
CUX2
CYB5R1

DAB2
DBP
DDIT3
DDX4
DDX43
DLX1
DLX2
DLX3
DLX4
DLX5
DMRTB1
DMRTC2
DNMT1
DPRX
DUXA
E2F8
EBF1
EBF2
EBF3
ECSIT
EGR1
EGR2
EIF5A2
ELF3
ELK3
EMX1
EN1
ERG
ESRRG
ETFB
ETS2
ETV1
ETV4
ETV5
EXO5
EZR
FEZF2

FHL2
FIGLA
FLI1
FOSB
FOSL1
FOXA2
FOXD2
FOXN2
FOXO03
FOXP1
FOXQ1
GATA2
GATA3
GATA4
GBX1
GBX2
GCM1
GIT2
GOT1
GPD1
GRHL1
GRHL2
GRHL3
GRHPR
GTF2A1L
GTF3A
H2AFY
HANDI1
HCFC2
HES1
HESX1
HEY1
HEY?2
HHAT
HHEX
HIF1A
HIRIP3

HIST1H2BN
HIST2H2BE
HKRI1
HLF
HNF1A
HNF4A
HOXA4
HOXA7
HOXA9
HOXB13
HOXB6
HOXC10
HOXDS8
HTATIP2
HUNK
ING3
IRF3
IRF4
IRF6
IRF8
IRX2
IRX3
IRX4
IRX5
ISL2
JAZF1
JDP2
JRKL
KDM4A
KDM4D
KDMA4E
KLF11
KLF12
KLF17
KLF18
KLF2
KLF3
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KLF4
KLF6
KLF7
KLF9
KLRG1
LARP1
LEF1
LHX2
LHX5
LHXS8
LRRFIP1
LSM6
LUZP2
MAF
MCTP2
MECOM
MIXL1
MLXIPL
MSI2
MSRA
MSRB3
MTHFD1
MYCL
MYLK
NANOG
NANOGPS
NCALD
NEUROG2
NFATC1
NFE2
NFIX
NFKB1
NFKB2
NFYA
NKX2-5
NKX3-1
NKX3-2

NKX6-1
NKX6-2
NMI
NNT
NOBOX
NR1H4
NR2E1
NR2F2
NR3C1
NR3C2
NR4A3
NR5A2
NR6A1
NRF1
OLIG1
OSR1
OSR2
OTX1
OTX2
OVOL1
OVOL2
P4HB
PARP1
PAX9
PBX3
PIR
PITX2
PKM
PKNOX2
PLAG1
PLAGL1
POLD2
POUS5SF1B
PPARG
PPARGCIA
PRDM1
PRDM10

PRDM11
PRDM14
PRDM16
PRDX5
PRKAAI1
PRKAA2
PSMC2
PSMD12
RAB14
RAB18
RARB
RAX2
RBBP9
RELB
RFX4
RFXANK
RLF
RORB
RUNX1
RUNX2
RUVBL1
RXRA
SALL2
SATB1
SETBP1
SHOX2
SIN3A
SMAD5
SMAD6
SNAI1
SNAI3
SND1
SOD1
SOX1
SOX11
SOX15
SOX17



Appendix D — Transcription factors list

SOX2 TFCP2L1 ZFP3 ZNF174 ZNF394 ZNF599 ZNF727
SOX30 TFEB ZFP37 ZNF18 ZNF408 ZNF606 ZNF735
SOX4 TGIF2LX ZFP42 ZNF182 ZNF416 ZNF610 ZNF1736
SOX5 THAP1 7ZFP62 ZNF184 7ZNF438 ZNF616 ZNF766
SOX9 THRB 7FP64 ZNF19 ZNF439 ZNF630 ZNF79
SP110 TIGD2 ZFP90 ZNF200 ZNF440 ZNF654 ZNF814
SP6 TOPORS ZHX2 ZNF211 ZNF479 ZNF668 ZNF829
SPIC TP63 ZHX3 ZNF214 ZNF490 ZNF669 ZNF830
SSX3 TPI1 71C3 ZNF215 ZNF506 ZNF674 ZNF831
STAT3 TPPP ZIK1 ZNF226 ZNF528 ZNF675 ZNF844
STAT5A TRIB2 ZIM2 ZNF23 ZNF530 ZNF677 ZNF845
SUCLG1 TRIB3 ZIM3 ZNF230 ZNF534 ZNF679 ZNF878
TAF7 TRIP10 ZKSCAN4 ZNF25 ZNF541 ZNF684 ZNF880
TAGLN2 TULP1 ZKSCAN5 ZNF256 ZNF549 ZNF689 ZNF891
TBPL2 UBE2V1 ZNF10 ZNF266 ZNF555 ZNF69 ZNF92
TBX2 UGP2 ZNF117 ZNF280A ZNF557 ZNF697 ZRSR2
TBX3 VENTX ZNF132 ZNF284 ZNF559 ZNF701 ZSCAN10
TBX5 YWHAZ ZNF134 ZNF304 ZNF561 ZNF702P ZSCAN18
TCF24 YY2 ZNF136 ZNF329 ZNF569 ZNF705A ZSCAN32
TCF7L1 ZBTB11 ZNF140 ZNF331 ZNF574 ZNF705CP ZSCAN4
TCF7L2 ZBTB16 ZNF146 ZNF341 ZNF578 ZNF705D ZSCANSA
TEAD1 ZBTB49 ZNF155 7ZNF343 ZNF584 ZNF705G ZSCANGB
TEAD3 ZBTB7B ZNF157 ZNF350 ZNF586 ZNF706 ZSCANSGC
TFAP2A ZCCHC14 ZNF16 ZNF354A ZNF595 ZNF708

TFAP2B ZEB1 ZNF165 ZNF362 ZNF596 ZNF714

TFAP2D ZFHX3 ZNF17 ZNF385A ZNF597 ZNFT716
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APPENDIX E

RECONSTRUCTED PRIOR KNOWLEDGE
NETWORK PK N°

See next page.
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APPENDIX F

RECONSTRUCTED PRIOR KNOWLEDGE
NETWORK PK N

See next page.
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Appendix F — Reconstructed Prior Knowledge Network PK N 0
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APPENDIX G

EXPERIMENTAL DESIGNS OF SOLUTION 2

A "min-max" normalization
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Figure G.1 — Partial graphical representations of experimental designs

discovered in solution 2 for both normalizations.
Only the 5 first cells involved in pseudo-perturbations are considered. Each row (left side) represents
an optimal pseudo-perturbation on the 10 selected input (green) and intermediate (red) genes. Binarized
vectors are illustrated using bars, where a black (resp. white) bar means the gene is active (resp. inactive).
On the right side, readout genes in blue, present in the inferred BNs, are shown. In each box, the curve
represents the normalized readout gene expression evolution between the medium TE (M, left) and late
TE (L, right) developmental stages.
(A) Representations for “min-max” normalization.
(B) Representations for “arctangeant” normalization.
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Programmes logiques pour déduire des modeles informatiques du développement

Réseaux Booléens — Answer-Set Programming — Biologie des Systemes —

Développement Préimplantatoire Humain — Single-cell transcriptomics

Résumé Lavenement des nouvelles
technologies de séquencage sur cellule
unique permet aujourd’hui une analyse fine
et approfondie des mécanismes de régulation
génique impliqués dans le développement
embryonnaire humain. Cet avancement
ouvre de nouvelles perspectives pour
étudier ce processus complexe et encore
mal compris. Cette thése s’intéresse a la
modeélisation informatique du développement
embryonnaire, dans le but de mieux
comprendre les mécanismes de régulation
génique impliqués. Pour ce faire, nous
présentons SCIBORG, une méthode qui
infere des réseaux Booléens modélisant
des stades de développement d’intérét.

En combinant des interactions géniques
issues de connaissances préalables avec
'expression génique observée dans les
cellules d’embryons, des modeles Booléens
sont appris pour indiquer les mécanismes
impliqués dans les stades de développement

étudiés. Nous avons appliqué notre
méthode a deux stades de développement
du trophectoderme et découvert des

mécanismes de régulation distincts dans
nos modeles. Dans I'ensemble, cette these
propose une méthode de modélisation des
mécanismes de régulation impliqués dans
un processus de différenciation cellulaire,
offrant ainsi un outil précieux pour I'étude du
développement embryonnaire humain.

Logic programs to infer computational models of human embryonic development

Keywords: Boolean Networks — Answer-Set Programming — Systems Biology — Human

Preimplantation Development — Single-cell transcriptomics

Abstract: The advent of new single-cell
sequencing technologies now allows for a
detailed and in-depth analysis of the gene
regulatory mechanisms involved in human
embryonic development. This advancement
opens new perspectives in the complex and
limited study of embryonic development.
This thesis focuses on the computational
modeling of development to better understand
the gene regulatory mechanisms involved.
To this end, we present SCIBORG, a
method that infers Boolean networks modeling
the stages of development of interest.

By combining gene interactions from prior
knowledge with observed gene expression
in embryonic cells, Boolean models are
learned, indicating the mechanisms involved
in the studied developmental stages. We
applied our method to two developmental
stages of the trophectoderm and discovered
distinct regulatory mechanisms in our models.
Overall, this thesis proposes a method for
modeling the regulatory mechanisms involved
in a cell differentiation process, providing a
valuable tool for studying human embryonic
development.
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