Logic programs to infer computational models of human embryonic development

Programmes logiques pour déduire des modèles informatiques du développement embryonnaire humain

Mathieu Bolteau

Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000 Nantes, France

Ph.D. Defense - Friday, October 4th 2024

Referees	Loïc Paulevé	Directeur de recherche, CNRS, Bordeaux, France
& Examiners:	Delphine Ropers	Directrice de recherche, Inria, Grenoble, France
Examiners:	Clémence Frioux	Chargée de recherche, Inria, Bordeaux, France
	Cédric Lhoussaine	Professeur, Université de Lille, Lille, France
	Richard Redon	Directeur de recherche, Inserm, Nantes, France
Ph.D. Director:	Jérémie Bourdon	Professeur, Nantes Université, Nantes, France
Ph.D. Advisor:	Carito Guziolowski	Maîtresse de conférence, École Centrale de Nantes, Nantes, France
Invited Member:	Laurent David	Maître de conférence-Praticien hospitalier, Nantes Université, Nantes, France

Conclusion & Perspectives

Human preimplantation embryonic development

Human preimplantation embryonic development

Introduction	
00000	

Conclusion & Perspectives

Context

Study human embryo is complex

- Biological mechanisms
- Legal constraints
- Experimental concerns

Introduction 000000 Results 000000 Conclusion & Perspectives

Context

Study human embryo is complex

- Biological mechanisms
- Legal constraints
- Experimental concerns

 $\mathsf{IVF} = \mathsf{in} \mathsf{vitro} \mathsf{fertilization}$

Introduction 000000 SCIBORG Metho

Results 000000 Conclusion & Perspectives

Context

Study human embryo is complex

- Biological mechanisms
- Legal constraints
- Experimental concerns

[De Geyter et al., Human Reproduction (2024)]

In silico model of human embryonic development

 $\mathsf{IVF} = \mathsf{in} \mathsf{vitro} \mathsf{fertilization}$

SCIBORG Metho

Results 000000 Conclusion & Perspectives

Data and preliminary study

Data and preliminary study

٠

Data and preliminary study

٠

۲

SCIBORG Metho

Results 000000 Conclusion & Perspectives

Data and preliminary study

Conclusion & Perspectives

Modeling single-cell data: existing tools

SCNS		[Moignard et al., Nature biotech. (2015)]
Gene expression state changes	Cell ordering	State transition graph: high combinatory (require small number of studied genes)

BoNesis		[Chevalier et al., ICTAI (2019)]
Prior gene interactions (Dorothea database) Cell ordering and dyn constraints		Mean of cells and gene expression
RE:IN		[Dunn et al., EMBO journal (2019)]
		Distantiant sustain allowing

Prior gene interactions (gene expression correlation)	Perturbations experiments	Biological system allowing perturbations / Limited number of perturbations
--	---------------------------	--

Conclusion & Perspectives

State-of-the-art tool review

Method	System size	Cell heterogeneity	Cellular dynamic evolution	Exhaustive enumeration	Validation
SCNS	• \approx 40 genes • \approx 4,000 cells				*
BoNesis	• \approx 1,000 genes • \approx 600 cells	×		×	×
RE:IN	• \approx 20 genes • \approx 30 perturbations	×	×	×	

* Thanks to experimental perturbations

Conclusion & Perspectives

State-of-the-art tool review

Method	System size	Cell heterogeneity	Cellular dynamic evolution	Exhaustive enumeration	Validation
SCNS	• \approx 40 genes • \approx 4,000 cells				*
BoNesis	• $\approx 1,000$ genes • ≈ 600 cells	×		×	×
RE:IN	• \approx 20 genes • \approx 30 perturbations	×	×	×	
Our goal	$\begin{array}{l} \bullet \approx 150 \hspace{0.1 cm} \text{genes} \\ \bullet \approx 700 \hspace{0.1 cm} \text{cells} \end{array}$				

* Thanks to experimental perturbations

Thesis Objective

Develop a new method to model regulatory mechanisms occurring in developmental stages

- Cell heterogeneity
- Cellular dynamic evolution
- Exhaustive enumeration
- Validation

Thesis Objective

Develop a new method to model regulatory mechanisms occurring in developmental stages

- Cell heterogeneity
- Cellular dynamic evolution
- Exhaustive enumeration
- Validation

SCIBORG

Using single-cell data to infer Boolean networks modeling regulation of genes

Introduction 000000

SCIBORG Method

Results

Conclusion & Perspectives

Overview of SCIBORG

[Bolteau et al., ISBRA (2023)]

[Bolteau et al., J. of Computational Biology (2024)]

SCIBORG Method

Results

Conclusion & Perspectives

Step 1. PKN reconstruction

Conclusion & Perspectives

Step 1. PKN reconstruction

Mathieu Bolteau (LS2N)

Conclusion & Perspectives

Step 2. Experimental design construction

Data preprocessing

• Binarization of input + intermediate genes

$$binarized = egin{cases} 0, & ext{if } raw < 2, \ 1, & ext{otherwise}. \end{cases}$$

[Bolteau et al., ISBRA (2023)] [Bolteau et al., J. of Computational Biology (2024)] [Bolteau et al., in prep.]

Mathieu Bolteau (LS2N)

Ph.D. Defense

SCIBORG Method

Results 000000 Conclusion & Perspectives

Step 2. Experimental design construction

stage A

SCIBORG Method

Results 000000 Conclusion & Perspectives

Step 2. Experimental design construction

Conclusion & Perspectives

Step 2. Experimental design construction

stage A

same expressions = pseudo-perturbation

different expressions = pseudo-observation

stage B

Conclusion & Perspectives

Step 2. Experimental design construction

Pseudo-perturbation identification problem statement

Given k,

select k genes from gene population,

that maximize the number of pairs of cells from stages A and B,

having the same expression for the k-genes.

pseudo-perturbations

Mathieu Bolteau (LS2N)

SCIBORG Method

Results 000000 Conclusion & Perspectives

Step 2. Pseudo-perturbation identification

parameter k

SCIBORG Method

Results 000000 Conclusion & Perspectives

Step 2. Pseudo-perturbation identification

Conclusion & Perspectives

Step 2. Pseudo-perturbation identification

- Optimal number of pseudo-perturbations: 2
- 2 pairs of matching cells: (c_1, c_5) , (c_2, c_4)

Step 2. Pseudo-perturbation identification program

Program encoded in answer set programming (ASP) [Baral, Cambridge University Press (2003)] Use of Clingo solver (Potassco suite) [Gebser et al., AI Communications (2011)]

Step 2. Pseudo-perturbation identification program

Program encoded in answer set programming (ASP) [Baral, Cambridge University Press (2003)] Use of Clingo solver (Potassco suite) [Gebser et al., AI Communications (2011)]

Main rules (x4)

- k-genes: Select k genes among all possible combinations of input + intermediate genes
- Reachability: input \rightarrow intermediate
- Matching cells: Select pairs of cells (c₁, c₂), c₁ ∈ A, c₂ ∈ B, for which the (binarized) expression matches for each of the k-genes
- Filter redundancy: The set of k (binarized) expressions should differ for all pseudo-perturbations of the same stage

Optimization

• Maximize the number of pseudo-perturbations of either A or B stage

[Bolteau et al., ISBRA (2023)] [Bolteau et al., J. of Computational Biology (2024)] [Bolteau et al., in prep.]

Mathieu Bolteau (LS2N)

Step 2. Pseudo-perturbation identification program

Dataset	Chebouba et (Chebouba et al., BMC Bioinformatics (2018))		SCIBORG first version		SCIBORG current version	
			[Bolteau et al., ISBRA (2023)]		[Bolteau et al., in prep]	
	Execution	Pseudo-	Execution	Pseudo-	Execution	Pseudo-
	time	perturbations	time	perturbations	time	perturbations
A	0.008s	3	0.008s	3	0.009s	3
В	0.048s	1	0.223s	4	0.060s	3
С	1.424s	1	10 min*	11	15min*	13
D	10 min*	10	10 min*	22	15min*	35
SC	5h 2 min	3	65h*	20	7h*	92
Р	50h*	23	50h*	25		

Dataset A: artificial toy dataset

Datasets B to D: toy dasatets of single-cell RNA-seq data from human emb. dev.

Dataset SC: single-cell dataset of medium and late TE stages

Dataset P: phosphoproteomics dataset from [Chebouba et al., BMC Bioinformatics (2018)]

* Execution time corresponds to the fixed timeout.

Conclusion & Perspectives

Step 2. Maximizing the pseudo-observation difference

stage A Cell c ₁	stage B	2 solutions:
	Cell C4	
[1,0,1] Cell c ₂	[1,1,0] Cell c ₅	
[1,1,0] Cell c ₃	Cell c ₆	
[21012]	[0,2,0]	

[Bolteau et al., ISBRA (2023)]

Ph.D. Defense

Step 2. Maximizing the pseudo-observation difference

Redundancy

2 solutions:

1. $(c_1, c_5), (c_2, c_4)$

[Bolteau et al., ISBRA (2023)]

Step 2. Maximizing the pseudo-observation difference

Redundancy

1.
$$(c_1, c_5), (c_2, c_4)$$

2.
$$(c_3, c_5)$$
, (c_2, c_4)

[Bolteau et al., ISBRA (2023)]

Step 2. Maximizing the pseudo-observation difference

Redundancy

2 solutions:

- 1. (c_1, c_5) , (c_2, c_4)
- 2. (c_3, c_5) , (c_2, c_4)

[Bolteau et al., ISBRA (2023)]

Vlathieu Bolteau (LS2	!N)
-----------------------	-----

Ph.D. Defense

[Bolteau et al., J. of Computational Biology (2024)]

Friday, October 4th 2024 15 / 27

Step 2. Maximizing the pseudo-observation difference

Redundancy

2 solutions:

- 1. $(c_1, c_5), (c_2, c_4)$
- 2. $(c_3, c_5), (c_2, c_4)$

Representativity score of pseudo-perturbations:

- Stage A: 100% (3/3)
- Stage B: 66% (2/3)

[Bolteau et al., ISBRA (2023)]

Ph.D. Defense

[Bolteau et al., J. of Computational Biology (2024)] Friday, October 4th 2024

Step 2. Maximizing the pseudo-observation difference

Redundancy

2 solutions:

- 1. $(c_1, c_5), (c_2, c_4)$
- 2. (c_3, c_5) , (c_2, c_4)

Representativity score of pseudo-perturbations:

- Stage A: 100% (3/3)
- Stage B: 66% (2/3)

Pseudo-observation difference maximization

Step 2. Maximizing the pseudo-observation difference

Redundancy

2 solutions:

- 1. $(c_1, c_5), (c_2, c_4)$
- 2. $(c_3, c_5), (c_2, c_4)$

Representativity score of pseudo-perturbations:

- Stage A: 100% (3/3)
- Stage B: 66% (2/3)

Pseudo-observation difference maximization

Step 2. Maximizing the pseudo-observation difference

Redundancy

2 solutions:

1.
$$(c_1, c_5), (c_2, c_4)$$

2.
$$(c_3, c_5), (c_2, c_4)$$

Representativity score of pseudo-perturbations:

- Stage A: 100% (3/3)
- Stage B: 66% (2/3)

Pseudo-observation difference maximization

Step 2. Maximizing the pseudo-observation difference

Redundancy

2 solutions:

- 1. $(c_1, c_5), (c_2, c_4)$
- 2. (c_3, c_5) , (c_2, c_4)

Representativity score of pseudo-perturbations:

- Stage A: 100% (3/3)
- Stage B: 66% (2/3)

Pseudo-observation difference maximization

Step 2. Maximizing the pseudo-observation difference

Redundancy

2 solutions:

- 1. $(c_1, c_5), (c_2, c_4)$
- 2. $(c_3, c_5), (c_2, c_4)$

Representativity score of pseudo-perturbations:

- Stage A: 100% (3/3)
- Stage B: 66% (2/3)

Pseudo-observation difference maximization

Mathieu Bolteau (LS2N)

Ph.D. Defense

Friday, October 4th 2024 16 / 27

SCIBORG Metho

Results ●00000 Conclusion & Perspectives

Reconstructed PKN

Results 0●0000

Conclusion & Perspectives

Pseudo-perturbation identification

TE = trophectoderm

Conclusion & Perspectives

Pseudo-perturbation identification

TE = trophectoderm

Conclusion & Perspectives

Pseudo-perturbation identification

Focus on medium and late TE stages (TE maturation)

Genes

Choose k genes from 85 inputs and 36 intermediates to identify pseudo-perturbations

$\binom{85+3}{k}$	³⁶)	\iff	$\binom{121}{k}$

TE = trophectoderm

Conclusion & Perspectives

Pseudo-perturbation identification

Genes

Choose k genes from 85 inputs and 36 intermediates to identify pseudo-perturbations

 $\binom{85+36}{k} \iff \binom{121}{k}$

 $\mathsf{TE} = \mathsf{trophectoderm}$

Execution time: 30 hours on a computer cluster (1.5 To RAM)

Pseudo-perturbation identification

Genes

Choose k genes from 85 inputs and 36 intermediates to identify pseudo-perturbations

$\binom{00}{k} \Leftrightarrow \binom{00}{k}$	ĥ,)
---	----	---

Conclusion & Perspectives

Pseudo-perturbation identification

Conclusion & Perspectives

Convergence of the identified pseudo-perturbations

Convergence of the number of pseudo-perturbations

Convergence of the identified pseudo-perturbations

Convergence of the number of pseudo-perturbations and equivalent solutions

Introduction 000000	SCIBORG Method	Results 00●000	Conclusion & Perspectives

Convergence of the identified pseudo-perturbations

Convergence of the number of pseudo-perturbations and equivalent solutions

BN learning

Redundant cells

Others cells

Introduction 000000	SCIBORG Method	Results 00●000	Conclusion & Perspectives

Convergence of the identified pseudo-perturbations

Convergence of the number of pseudo-perturbations and equivalent solutions

Mathieu Bolteau ((LS2N)
-------------------	--------

Conclusion & Perspectives

Robustness of the equivalent solutions' composition

Conclusion & Perspectives

Robustness of the equivalent solutions' composition

Regulatory mechanisms in the learned models

Conclusion & Perspectives

Regulatory mechanisms in the learned models

Conclusion & Perspectives

Regulatory mechanisms in the learned models

Conclusion & Perspectives

Regulatory mechanisms in the learned models

Regulatory mechanisms in the learned models

 $MYC = (\neg TCF4 \land \neg PCBP4) \lor (\neg PCBP4 \land TERT)$

Regulatory mechanisms in the learned models

Regulatory mechanisms in the learned models

Conclusion & Perspectives

Regulatory mechanisms in the learned models

Conclusion & Perspectives

Regulatory mechanisms in the learned models

Conclusion & Perspectives

Regulatory mechanisms in the learned models

Introduction 000000 SCIBORG Meth 000000000 Results 00000

Conclusion & Perspectives

Validation of the learned models: Cell classifier

Pseudo-perturbation cells (training set)

Redundant cells (testing set 1)

Other cells (testing set 2)
SCIBORG Meth

Results 000000

Conclusion & Perspectives

Validation of the learned models: Cell classifier

Pseudo-perturbation cells

(training set)

Accuracy	BAC	Medium TE accuracy	Late TE accuracy
72 %	72 %	64 %	81 %

Redundant cells (testing set 1)

Accuracy	BAC	Medium TE accuracy	Late TE accuracy
66 %	67 %	52 %	81 %

Other cells (testing set 2)

Accuracy	BAC	Medium TE accuracy	Late TE accuracy
68 %	68 %	62 %	73 %

BAC = Balanced accuracy

Mathieu Bolteau (LS2N)

[Bolteau et al., in prep.]

Introduction 000000

SCIBORG Meth

Results 000000

Conclusion & Perspectives

Validation of the learned models: Cell classifier

Pseudo-perturbation cells

(training set)

Accuracy	BAC	Medium TE accuracy	Late TE accuracy
72 %	72 %	64 %	81 %

Redundant cells (testing set 1)

Accuracy	BAC	Medium TE accuracy	Late TE accuracy
66 %	67 %	52 %	81 %

Other cells (testing set 2)

Accuracy	BAC	Medium TE accuracy	Late TE accuracy	
68 %	68 %	62 %	73 %	

SCIBORG learns accurate models

$BAC = Balanced \ accuracy$		[Bolteau et al., in	prep.]
Mathieu Bolteau (LS2N)	Ph.D. Defense	Friday, October 4th 2024	22 / 27

Introduction 000000

SCIBORG Meth

Results 00000

Conclusion & Perspectives

Validation of the learned models: Cell classifier

Introduction 000000

SCIBORG Meth

Results 00000

Conclusion & Perspectives

Validation of the learned models: Cell classifier

Conclusion & Perspectives \bullet 0000

Conclusion

Convergence of pseudo-perturbation identification

- Efficient program
- Limited number of equivalent solutions
- Pseudo-perturbations representativity

Conclusion & Perspectives •0000

Conclusion

Convergence of pseudo-perturbation identification

- Efficient program
- Limited number of equivalent solutions
- Pseudo-perturbations representativity

Robustness in both equivalent solutions

Distinct genes

Conclusion & Perspectives •0000

Conclusion

Convergence of pseudo-perturbation identification

- Efficient program
- Limited number of equivalent solutions
- Pseudo-perturbations representativity

Robustness in both equivalent solutions

• Distinct genes

Gene regulatory mechanisms

- Distinguishing 2 stages
- Potential key genes

Conclusion & Perspectives $0 \bullet 000$

Conclusion

Complementarity with the state-of-the-art methods						
	Method	Cell heterogeneity	Cellular dynamic evolution	Exhaustive enumeration	Validation	
	SCIBORG		*			
* Secondary objective						

Conclusion & Perspectives

Conclusion

Complementarity with the state-of-the-art methods						
	Method	Cell heterogeneity	Cellular dynamic evolution	Exhaustive enumeration	Validation	
	SCIBORG		×*			
* Secondary objective						

Publications

- <u>Bolteau</u>, M., Bourdon, J., David, L. Guziolowski, C., Inferring Boolean Networks from Single-Cell Human Embryo Datasets, *International Symposium of Bioinformatics and Research Applications (ISBRA)*, 2023.
- Bolteau, M., Chebouba, L., David, L., Bourdon, J. Guziolowski, C., Boolean Network Models of Human Preimplantation Development, *Journal of Computational Biology*, 2024.
- Bolteau, M., Bourdon, J., David, L. Guziolowski, C., in prep.
- Le Bars, S., Bolteau, M., Bourdon, J. Guziolowski, C., Predicting weighted unobserved nodes in a regulatory network using answer set programming, *BMC Bioinformatics*, 2023.

Introduction 000000	SCIBORG Method	Results 000000	Conclusion & Perspectives
Perspectives			

Study other developmental stages via exploration other cell fates (PrE, EPI)

PrE = primitive endorderm; EPI = epiblast; TE = trophectoderm

PrE = primitive endorderm ; EPI = epiblast ; TE = trophectoderm

PrE = primitive endorderm; EPI = epiblast; TE = trophectoderm

Conclusion & Perspectives $000 \bullet 0$

Perspectives

Apply SCIBORG on other biological studies Inner lymphoid cell development (CRCI2NA lab) Cell differentiation in Duchenne muscular dystrophy (TaRGeT lab)

Conclusion & Perspectives $000 \bullet 0$

Perspectives

Apply SCIBORG on other biological studies Inner lymphoid cell development (CRCI2NA lab) Cell differentiation in Duchenne muscular dystrophy (TaRGeT lab)

Modeling dynamic processes to deal with more than two stages (caspo-ts)

[Razzaq et al., PLOS Comp. Bio. (2018)]

- Preliminary work has been conducted (Centrale Nantes students supervision)
- Work to be continued with another Ph.D. thesis

Logic programs to infer computational models of human embryonic development

Programmes logiques pour déduire des modèles informatiques du développement embryonnaire humain

Mathieu Bolteau

Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000 Nantes, France

Ph.D. Defense - Friday, October 4th 2024

ANR BOOSTIVE