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Human preimplantation embryonic developme

Segmentation
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Adapted from Meistermann, Thesis (2020).
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[Meistermann et al., Cell Stem Cell (2021)]
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Context

Study human embryo is complex
® Biological mechanisms
® | egal constraints

® Experimental concerns

Mathieu Bolteau (LS2N) Ph.D. Defense

Friday, October 4th 2024



Introduction
0@0000

Context

Study human embryo is complex
® Biological mechanisms
® | egal constraints

® Experimental concerns
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Poor success of IVF

[De Geyter et al., Human Reproduction (2024)]

IVF = in vitro fertilization
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Data a nd prel | m | na ry Study [Meistermann et al., Cell Stem Cell (2021)]

Count Matrix

| 34,054 genes

From 88
stage-matched 1,496
human embryos cells
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Data a nd prel | m | na ry Study [Meistermann et al., Cell Stem Cell (2021)]
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Adapted from Meistermann et al., Cell Stem Cell (2021).
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Data a nd prel | m | na ry Study [Meistermann et al., Cell Stem Cell (2021)]

Count Matrix

| 34,054 genes

From 88
stage-matched 1,496
human embryos cells
\/

® Clustering of cells (8 stages) S

® |dentification of gene modules
— 438 transcription factors

© B18B2EPI
@ EPlearly TE
Undefined / | @ EPLPrE.TE
Intermediate | o £py prE

@ PETE

® Pseudotime evolution of cells at
different developmental stages

Adapted from Meistermann et al., Cell Stem Cell (2021).
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Modeling single-cell data: existing tools

SCNS [Moignard et al., Nature biotech. (2015)]

State transition graph: high

Gene expression state q " .
P Cell ordering combinatory (require small

changes .

& number of studied genes) )
BoNesis [Chevalier et al., ICTAI (2019)]
Prior gene interactions Cell ordering and dynamical .

. Mean of cells and gene expression
(Dorothea database) constraints ‘
RE:IN [Dunn et al., EMBO journal (2019)]

Biological system allowing
Perturbations experiments perturbations / Limited number
of perturbations

Prior gene interactions
(gene expression correlation)

4
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State-of-the-art tool review

Cell Cellular Exhaustive
Method System size . dynamic . Validation
heterogeneity . enumeration
evolution
400008 9 9 9 &
SCNS e ~ 4,000 cells
. e =~ 1,000 genes e Q Q e
BoNesis e ~ 600 cells
. e = 20 genes 6 Q Q
RE:IN e =~ 30 perturbations

* Thanks to experimental perturbations
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State-of-the-art tool review
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Method System size . dynamic ustn Validation
heterogeneity . enumeration
evolution
a0 o 9 9 @
SCNS e ~ 4,000 cells
. e =~ 1,000 genes e Q Q e
BoNesis e ~ 600 cells
o e O 0 0 9
RE:IN e =~ 30 perturbations
e ~ 150 genes Q 0 Q Q
Our goal e ~ 700 cells

* Thanks to experimental perturbations
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Thesis Objective

Develop a new method to model regulatory mechanisms
occurring in developmental stages

Cell heterogeneity

Cellular dynamic evolution
® Exhaustive enumeration

Validation
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Thesis Objective

Develop a new method to model regulatory mechanisms
occurring in developmental stages

Cell heterogeneity

Cellular dynamic evolution
® Exhaustive enumeration

Validation

SCIBORG

Using single-cell data to infer Boolean networks
modeling regulatlon of g genes
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Overview of SCIBORG

Prior Knowledge Network (PKN) reconstruction

PKN construction

PKN reduction

Experimental design construction

(Gene expression
data

Pseudo-perturbation
fentification

Reduced PKN

i

Boolean networks
for stage A

Boolean network
lear

Families of
Boolean networks

Boolean networks
for stage B

designs

Boolean network
inference

[Bolteau et al., ISBRA (2023)]
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[Bolteau et al., J. of Computational Biology (2024)]
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Step 1. PKN reconstruction

zscana LEFL
oTx2 zeB1

onT1 DuxA
[ARGFX HEY1
KLF17 KLF11

Recursive queries on Pathway Commons HE—
database, via pyBRAvo [Lefebvre et al., Database (2021)] fovsre o2
Gene list
Input ‘ Output ‘ Parameter \L
Pathway Commons
Genelist | PKN | Depth Gy
tool

" input
®  intermediate
| readout
o e,
—>» activation
N ~— inhibtion
—0 partof

PKN = prior knowledge network
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Step 1. PKN reconstruction

zscana LEFL
oTx2 zeB1

onT1 DuxA
[ARGFX HEY1
KLF17 KLF11

Recursive queries on Pathway Commons

IGFIR SNAT1

database, via pyB RAVO (Lefebure et al., Database (2021)] poosne soe
Gene list
Input ‘ Output ‘ Parameter \L
Pathway Commons
Genelist | PKN | Depth A,
tool
& intermediate o possible \L
genes pseudo-perturbations 1 ) '] input
N\ ‘ ®  intermediate
. / readout
readout genes — pseudo-observations ' o protein
complex
—> activation
N ~——inhibtion
—0 partof
PKN = prior knowledge network PKN
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Step 2. Experimental design construction

Data preprocessing

® Binarization of + intermediate genes

. 0, if raw <2,
binarized =

, otherwise.

® Normalization of readout genes

-

normalized

) 2
normalized = — x arctan(raw)
i

o

[Bolteau et al., ISBRA (2023)] [Bolteau et al., J. of Computational Biology (2024)] [Bolteau et al., in prep.]

Mathieu Bolteau (LS2N) Ph.D. Defense Friday, October 4th 2024 10 /27



SCIBORG Method
000@00000

Step 2. Experimental design construction
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Step 2. Experimental design construction

different expressions [

pseudo-observation
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Step 2. Experimental design construction

different expressions [

pseudo-observation

Pseudo-perturbation identification problem statement

Given k,
select k genes from gene population,

that maximize the number of pairs of cells from stages A and B,
having the same expression for the k-genes.
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Step 2. Pseudo-perturbation identification

pseudo-
observations

ED
EREE 0
- KB

0

08 04 06 A
020503 A
0.8 0.3 0.9
0.6 0.1 0.2
1 I8 JElo7 0805 B

0 0 o Jfo7 0203 B

parameter k

D E
KN o
0 0

Cs

Cs
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Step 2. Pseudo-perturbation identification

pseudo-
observations

| cell D E] stage]
ci 0 0 080406 A

cc [l o JEll o 0 020503 A
c: [ENEN o 0.8 0309 A
Cs 0 06 0102 B
Cs 00 KMo 0805 B
G |00 o JElo7 0203 B

parameter k

experimental design A experimental design B

[ cell | D | |stage IR cell stage
c1 0 Elo08 0406 A @——@ o o [EMo7 08 05 B
c 0 020503 A e@-lichg 0 060102 B
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Step 2. Pseudo-perturbation identification

pseudo-
observations

| cell D E] stage]
ci 0 0 080406 A

cc [l o JEll o 0 020503 A
c: [ENEN o 0.8 0309 A
Cs 0 06 0102 B
Cs 00 KMo 0805 B
G |00 o JElo7 0203 B

parameter k

experimental design A experimental design B

[ cell | |stage IR cell stage
c1 0 Elo08 0406 A @——@ o o [EMo7 08 05 B
c 0 020503 A e@-lichg 0 060102 B

® Optimal number of pseudo-perturbations: 2

® 2 pairs of matching cells: (c1,¢s), (c2,¢a)

Mathieu Bolteau (LS2N) Ph.D. Defense Friday, October 4th 2024 12/27
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Step 2. Pseudo-perturbation identification program

Program encoded in answer set programming (ASP) (sua\ cambridge universiy Press (2003)]
Use of Clingo solver (Potassco suite) (sebser et al. Al Communications (2011)]
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Step 2. Pseudo-perturbation identification program

Program encoded in answer set programming (ASP) (sua\ cambridge universiy Press (2003)]
Use of Clingo solver (Potassco suite) (sebser et al. Al Communications (2011)]
Main rules (x4)

® k-genes: Select k genes among all possible combinations
of + intermediate genes

® Reachability: — intermediate

® Matching cells: Select pairs of cells (c1, c2), c1 € A, & € B,
for which the (binarized) expression matches for each of the k-genes

® Filter redundancy: The set of k (binarized) expressions should differ
for all pseudo-perturbations of the same stage

Optimization
® Maximize the number of pseudo-perturbations of either A or B stage

[Bolteau et al., ISBRA (2023)] [Bolteau et al., J. of Computational Biology (2024)] [Bolteau et al., in prep.]
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Step 2. Pseudo-perturbation identification program

SCIBORG SCIBORG

Chebouba . . .
first version current version

Dataset [Chebouba et al., BMC Bioinformatics (2018)]
[Bolteau et al., ISBRA (2023)] [Bolteau et al., in prep]
Execution Pseudo- Execution Pseudo- Execution Pseudo-
time perturbations time perturbations time perturbations
A 0.008s 3 0.008s 3 0.009s 3
B 0.048s 1 0.223s 4 0.060s 3
C 1.424s 1 10 min* 11 15min* 13
D 10 min* 10 10 min* 22 15min* 35
SC 5h 2 min 3 65h* 20 7h* 92
P 50h* 23 50h* 25

Dataset A: artificial toy dataset

Datasets B to D: toy dasatets of single-cell RNA-seq data from human emb. dev.

Dataset SC: single-cell dataset of medium and late TE stages

Dataset P: phosphoproteomics dataset from [Chebouba et al., BMC Bioinformatics (2018)]
* Execution time corresponds to the fixed timeout.

Mathieu Bolteau (LS2N) Ph.D. Defense Friday, October 4th 2024
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Step 2. Maximizing the pseudo-observation difference

stage A
Cell ¢,
[1,01] .
Cell c,
[1,1,0] .

Cell cs
[1,01] .

stage B
. Cell cs
[1,1,0]
. Cell cs
[L01]

. Cell cs
[0,1,0]

2 solutions:

Mathieu Bolteau (LS2N)

[Bolteau et al.,

ISBRA (2023)]
Ph.D. Defense

[Bolteau et al.,

Friday, October 4th 2024

J. of Computational Biology (2024)]
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Step 2. Maximizing the pseudo-observation difference

stage A stage B
matches
Cell ¢ Cell ¢,
[1.0.1] [1.10]
Cellc, Cell cs
[1.1,0] [1.0.1]

Cell cs Cell cs
[1,0,1] . . [0,1,0]

2 solutions:

1. (c1,05), (c2,ca)

[Bolteau et al., ISBRA (2023)]

Mathieu Bolteau (LS2N)

Ph.D. Defense

[Bolteau et al., J. of Computational Biology (2024)]

Friday, October 4th 2024
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Step 2. Maximizing the pseudo-observation difference

Cell c,
[104] ‘
Cell c2

[1,.1,0]

Cell cs
[1.01]

stage B .
matches 2 solutions:
Cell cs
[1.1.0] 1.
Cell cs
[101]

. Cell cs
[0,1,0]

(c1,65), (c2,ca)
2. (c3,05), (c2,ca)

Mathieu Bolteau (LS2N)

[Bolteau et al., ISBRA (2023)]
Ph.D. Defense

[Bolteau et al., J. of Computational Biology (2024)]
Friday, October 4th 2024 15 /27
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Step 2. Maximizing the pseudo-observation difference

stage A stage B . .
S 2 solutions:
Cell c, Cell cs
11.0.1] [1.1,0] 1. (c1.65), (c2,ca)
Cell c. Cell cs 2. (c3,¢c5), (c2.ca)
[1,1,0] [10,1]
Cell cs Cell cs
[1.0,1] . [0,1,0]
Redundancy
Cells c; and c; are redundant cells

[Bolteau et al., ISBRA (2023)] [Bolteau et al., J. of Computational Biology (2024)]
Mathieu Bolteau (LS2N) Ph.D. Defense Friday, October 4th 2024 15 /27
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Step 2. Maximizing the pseudo-observation difference

Redundancy
tage A tage B .
slage S siage 2 solutions:
Cell c, Cell cs
11.0.1] [1.1,0] 1. (c1.65), (c2,ca)
(‘ﬁslllot]:z Cffyﬁs 2. (c3,65), (c2,ca)
o v Representativity score of pseudo-perturbations:
Cellc Cell ¢
[1‘0.1]3 . [0.1,0]6 ® Stage A: 100% (3/3)
IREGITERE) e Stage B: 66% (2/3)
Cells c; and c; are redundant cells

[Bolteau et al., ISBRA (2023)] [Bolteau et al., J. of Computational Biology (2024)]
Mathieu Bolteau (LS2N) Ph.D. Defense Friday, October 4th 2024 15 /27
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Step 2. Maximizing the pseudo-observation difference

stage A stage B
matches
Cell ¢, Cell cs
[1,0,1] [1,1,0]
Cell c; Cell cs
[1,1,0] [1,0,1]
Cell cs Cell cs
10,1 ' [0,1,0]

Redundancy
Cells ¢, and c; are redundant cells

Pseudo-observation difference maximization

S
0.8 0.4 0.6 A
O 020503 A

S
Cs 0 0.8 0.3 0.9 A
Cz 0 020503 A

experimental design for stage A

[Bolteau et al.,

Mathieu Bolteau (LS2N)

2 solutions:
1. (c1,05), (c2,ca)
2. (e3,¢5), (c2,¢4)
Representativity score of pseudo-perturbations:
® Stage A: 100% (3/3)
® Stage B: 66% (2/3)

. match °
° match °

| stage|
07 08 05 B
0 06 0102 B

stage
ENo7 0805

0 0.6 0.1 0.2 B
experimental design for stage B

Solution 1

D Solution 2

° match Y

Cs
Ca

ISBRA (2023)]
Ph.D. Defense

[Bolteau et al.,

Friday, October 4th 2024

J. of Computational Biology (2024)]
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Step 2. Maximizing the pseudo-observation difference

stage A stage B

- 2 solutions:
Cell c, Cellc,
[2.04] [1.1.0] 1. (c1,05), (c2,ca)
Cell c. Cell cs 2. (e3,¢5), (c2,¢4)
[1.1,0] 10,1 o .
Representativity score of pseudo-perturbations:
Cellc Cell ¢
o] ] 010 ® Stage A: 100% (3/3)

Redundancy
Cells ¢, and c; are redundant cells

Pseudo-observation difference maximization

® Stage B: 66% (2/3)

match s'age
(08 0.4 0.6 0—0 0.7 0.8 05 .
o 02 05 03 A owo 0 0601 02 Solution 1
diff(c1,cs) = [0.8-0.7] + |0,4-O.8| 0.6-0.5] = J
Vs.
maich stage Solution 2
c 0 08 0.3 09 A 0—0 07 08 05
ce 0 020503 A .m. = o 06 0.1 02 B

experimental design for stage A

[Bolteau et al.,

Mathieu Bolteau (LS2N)

ISBRA (2023)]
Ph.D. Defense

experimental design for stage B

[Bolteau et al.,

Friday, October 4th 2024
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Step 2. Maximizing the pseudo-observation difference

stage A stage B

- 2 solutions:
Cell c, Cellc,
[2.04] [1.1.0] 1. (c1,05), (c2,ca)
Cell c. Cell cs 2. (e3,¢5), (c2,¢4)
[1.1,0] 10,1 o .
Representativity score of pseudo-perturbations:
Cellc Cell ¢
o] ] 010 ® Stage A: 100% (3/3)

Redundancy
Cells ¢, and c; are redundant cells

Pseudo-observation difference maximization

® Stage B: 66% (2/3)

match s'age
0.8 0.4 0.6] Homct g 0.7 0.8 0.5 )
o 02 0.5 0.3 /—\ owo 0 0.6 0.1 0.2 Solution 1
diff(c1,cs) = |0.8-0.7| + |0,4-0.8| 0.6-0.5] =
VS.
diff(03,05)=|0807|+|0308|+|0905|- )
cell L stage Solution 2
o o K (ot oG BioTosos oo |
c. [KIEN o 020503 Oz 0 060102 B

experimental design for stage A

[Bolteau et al.,

Mathieu Bolteau (LS2N)

ISBRA (2023)]
Ph.D. Defense
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Step 2. Maximizing the pseudo-observation difference

stage A stage B

- 2 solutions:
Cell ¢, Cellc,
[2.04] [1.1.0] 1. (c1,05), (c2,ca)
Cell c. Cell cs 2. (e3,¢5), (c2,¢4)
[1.1,0] 10,1 o .
Representativity score of pseudo-perturbations:
Cellc Cell ¢
o] ] 010 ® Stage A: 100% (3/3)
Redundancy

® Stage B: 66% (2/3)

Cells ¢, and c; are redundant cells

Pseudo-observation difference maximization

match s'age
0.8 0.4 0.6] Homact o 0.7 0.8 0.5 )
o 02 05 0.3 A owo 0 0.6 0.1 0.2 Solution 1
diff(c1,cs) = [0.8-0.7| + |0,4-O.8| 0.6-0.5] = J
VS.
diff(cs,Cs) = |0.8-0.7| +0.3-0.8| + ]0.9-0. 5| = )
cell D | stage Solution 2
o [ (ot oG s el
0 020503 oritch o 0 os 01 02 B

experimental design for stage A

experlmental design for stage B

[Bolteau et al., ISBRA (2023)]

Ph.D. Defense

[Bolteau et al., J. of Computational Biology (2024)]
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Step 2. Maximizing the pseudo-observation difference

stage A stage B

- 2 solutions:
Cell c, Cellc,
[2.04] [1.1.0] 1. (c1,05), (c2,ca)
Cell c. Cell cs 2. (e3,¢5), (c2,¢4)
[1.1,0] 10,1 o .
Representativity score of pseudo-perturbations:
Cellc Cell ¢
o] ] 010 ® Stage A: 100% (3/3)

Redundancy
Cells ¢, and c; are redundant cells

® Stage B: 66% (2/3)

Pseudo-observation difference maximization

- D stage
(0.8 0.4 0.6] 0&0 o [EMo7 08 05] B )
o 0.2 05 0.3 A oich g [l 0 060102 B [Solutionl
diff(c1,c5) = [0.8-0.7| + |0.4-0.8| |0.6-0.5| =0.6 )
VS.
diff(cs,cs) = |0.8-0.7| +10.3-0.8] + |0.9-0. 5| = )
cell sf39° Solution 2
i (ot oG s el
0 020503 (R 0 os 0.7 oz B

experimental design for stage A

experlmental design for stage B

Mathieu Bolteau (LS2N)

[Bolteau et al., ISBRA (2023)]

Ph.D. Defense

[Bolteau et al.,

Friday, October 4th 2024

J. of Computational Biology (2024)]
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Step 3 . BN Iea rn | ng USI ng CaSpO [Guziolowski et al., Bioinformatics (2013)]

 cell | | D | stage] [ cell | | D | stage]
cs o [Elo8 0309 A cs o [Elo7 0805 B
c 0 020503 A Cs 0 060102 B
experimental design of stage A experimental design of stage B

+

9A dc 98

o g

9H

PKN 9 (sc
9A gc .
/ learning \ n
% Boolean networks
(Caspo)
9F 96 96
family of Boolean family of Boolean
networks of stage A networks of stage B
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Reconstructed PKN

Input ‘ Output ‘ Parameter
348 transcription factors ‘ 233 nodes ‘ 360 edees No depth
from gene module analysis | 36 intermediates 19 readouts 85 protein complexes | & (total reconstruction)

[Meistermann et al., Cell Stem Cell (2021)]

ai -
T—F
-

readout protein complex ~<— activation ~—— inhibition —— part of

[Bolteau et al., in prep.]

Mathieu Bolteau

Ph.D. Defense Friday, October 4th 2024
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Pseudo-perturbation identification

Focus on medium
and late TE stages
(TE maturation)

TE = trophectoderm

Mathieu Bolteau (LS2N) Ph.D. Defense Friday, October 4th 2024 18 /27
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Pseudo-perturbation identification

Focus on medium
and late TE stages

Late TE
i 332 cells
(TE maturation)
(2 spacicaion |
X
. [nnac conmans Medium TE
= 348 cells

y

caryTE

TE = trophectoderm
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Pseudo-perturbation identification

Focus on medium

Genes
and late TE stages Late TE
X 332 cells
(TE maturation) Choose k genes
[ spacication | from and 36 intermediates
Y, am— Medium TE to identify pseudo-perturbations
= 348 cells

(1) = (&)

caryTE

TE = trophectoderm
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Pseudo-perturbation identification

Focus on medium

Genes
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Cell differentiation
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(CRCI2NA lab) (TaRGeT Iab)

on other biological studies

® Preliminary work has been conducted

(Centrale Nantes students supervision)

Modeling dynamic processes
to deal with more than two stages
(caspo-ts)

[Razzaq et al., PLOS Comp. Bio. (2018)]

® Work to be continued with another
Ph.D. thesis
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