Boolean Network Models of Human Preimplantation Development

Mathieu Bolteau

Computational Biology (COMBI) group

Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000 Nantes, France

🖂 mathieu.bolteau@ls2n.fr – 🏶 www.mathieubolteau.xyz

DEVSTEM Meeting

Tuesday, March 12th 2024

Method 000000000 Results

Conclusion & Perspectives

Motivations

Need to better understand preimplantation development (especially cell fate transition)

Method 000000000 Results 00000000000000 Conclusion & Perspectives

Motivations

Need to better understand preimplantation development (especially cell fate transition)

Research on human embryos is limited (experiments, law, ethics)

In silico predictive model of the cell fate transition during the human preimplantation development

Conclusion & Perspectives

Human embryonic development

Results 0000000000000000 Conclusion & Perspectives

Background

[Meistermann, et al. Cell Stem Cell, 2021]

scRNAseq data from multiple stage embryos

Expression of \sim 20,000 genes in \sim 1,700 cells from 128 multi-stage embryos

Principal results

- Clustering of cells
- Identification of gene modules \rightarrow 438 transcription factors (TFs)
- Pseudotime evolution of cells at different developmental stages

Method 000000000 Results 00000000000000 Conclusion & Perspectives

Concepts

Prior-Knowledge Network (PKN)

Signed and oriented graph, where nodes correspond to biological entities (e.g., genes, proteins), and edges represent causal or functional relationships between these entities . [Radulescu et al., JRSI, 2006]

Conclusion & Perspectives

Concepts

Prior-Knowledge Network (PKN)

Signed and oriented graph, where nodes correspond to biological entities (e.g., genes, proteins), and edges represent causal or functional relationships between these entities . [Radulescu et al., JRSI, 2006]

Boolean Network (BN)

A Boolean network *B*, of dimension *n* is defined as B = (N, F) where: $N = \{v_1, \ldots, v_n\}$ is a finite set of nodes (variables or genes) and $F = \{f_1, \ldots, f_n\}$ is a set of Boolean functions $f_i : \mathbb{B}^n \to \mathbb{B}$, with $\mathbb{B} = \{0, 1\}$, describing the evolution of variable v_i . [Kauffman, *JTB*, 1969]

Conclusion & Perspectives

Concepts

Prior-Knowledge Network (PKN)

Signed and oriented graph, where nodes correspond to biological entities (e.g., genes, proteins), and edges represent causal or functional relationships between these entities . [Radulescu et al., JRSI, 2006]

Boolean Network (BN)

A Boolean network *B*, of dimension *n* is defined as B = (N, F) where: $N = \{v_1, \ldots, v_n\}$ is a finite set of nodes (variables or genes) and $F = \{f_1, \ldots, f_n\}$ is a set of Boolean functions $f_i : \mathbb{B}^n \to \mathbb{B}$, with $\mathbb{B} = \{0, 1\}$, describing the evolution of variable v_i . [Kauffman, *JTB*, 1969]

Pseudo-perturbation

Boolean vector that encodes the expression status of a set of k genes within a particular cell. A pseudo-perturbation of a cell in a class *matches* with a second pseudo-perturbation from another class. [Bolteau *et al., JCB, submitted*]

Mathieu Bolteau (LS2N)

DEVSTEM Meeting

Method 00000000 Results 00000000000000 Conclusion & Perspectives

Concepts

Answer Set Programming (ASP)

A declarative programming paradigm used to solve difficult (primarily NP-hard) search problems. It is based on rules and constraints permitting to restrict the problem from an initial solution set. [Baral, *Cambridge University Press*, 2003]

Conclusion & Perspectives

Concepts

Answer Set Programming (ASP)

A declarative programming paradigm used to solve difficult (primarily NP-hard) search problems. It is based on rules and constraints permitting to restrict the problem from an initial solution set. [Baral, *Cambridge University Press*, 2003]

<head> :- <body>.

Conclusion & Perspectives

Concepts

Answer Set Programming (ASP)

A declarative programming paradigm used to solve difficult (primarily NP-hard) search problems. It is based on rules and constraints permitting to restrict the problem from an initial solution set. [Baral, *Cambridge University Press*, 2003]

```
<head> :- <body>.
```

An example: select only "medium TE" and "late TE" cells

```
1 % Facts representing the knowledge
2 cell(c1). cell(c2). cell(c3). % 3 cells
3 class(early_TE). class(medium_TE). class(late_TE). % 3 classes
4 be_part(c1,early_TE). be_part(c2,medium_TE). be_part(c3,late_TE).
5 % Generate all possible set of selected cells
6 {sel_cell(C,CL) : cell(C), be_part(C,CL)}.
7 % Forbid answers with early TE class sel_cell()
8 :-sel_cell(_,early_TE).
9 % Print selected cells
10 #show sel cell/4.
```

State of the art – modeling of single data

Data analysis

- Statistical, *e.g.* weighted correlation network analysis (WGCNA [Langfelder & Horvath, *BMC Bioinformatics*, 2008])
- Machine learning, *e.g.* reverse graph embedding (pseudotime [Qiu *et al.*, *Nature Methods*, 2017]), uniform manifold approximation and projection (UMAP [McInnes *et al.*, *arXiv* preprint, 2018])

Network inference

• Correlation, *e.g.* gene regulatory network (GRN) inference (SCENIC [Aibar *et al.*, *Nat Methods*, 2017])

Modeling

- Dynamic Boolean models via BoNesis requires average of gene expression and prior knowledge [Chevalier *et al., ICTAI,* 2019]
- Mouse embryo development computational models requires genetic perturbations and knockdowns [Dunn et al., EMBO journal, 2019]

Goal: Boolean models of embryonic developmental stages

Challenges

- Single cell data specifity: sparsity and redundancy
- High dimensional data: $\sim 20,000$ genes for $\sim 1,700$ cells
- Unavailable perturbations

Goal: Boolean models of embryonic developmental stages

Challenges

- Single cell data specifity: sparsity and redundancy
- High dimensional data: $\sim 20,000$ genes for $\sim 1,700$ cells
- Unavailable perturbations

Proposed solution

[Bolteau et al. ISBRA'23, 2023.]

- Distinguish between two developmental stages
- Build specific network models for each stage
- Identify regulatory mechanisms that differentiate both models
- Application on TE maturation: medium (M^{TE}) and late (L^{TE}) TE

Introd	uction
0000	000

Results 00000000000000 Conclusion & Perspectives

Pipeline

[Bolteau et al. ISBRA'23, 2023.]

Mathieu Bolteau (LS2N)

Results 00000000000000 Conclusion & Perspectives

Learning predictive models

- Signed and directed causal interactions among genes
- Gene expression for a developmental stage

Method 00000000

Results

Conclusion & Perspectives

Step 1. PKN reconstruction

Conclusion & Perspectives

Step 1. PKN reconstruction

Query on PathwayCommons database, via pyBRAvo [Lefebvre et al. Database, 2021]

Parameter: max depth

Output PKN

- Labeled (activation/inhibition) and oriented graph
- Nodes: genes (inputs + intermediates + readouts), protein-complexes
- Edges: Transcription regulation

 \rightarrow inputs & intermediates genes: entry for experimental design (Step 2)

 \rightarrow readouts genes: output for experimental design (Step 2)

Results 00000000000000 Conclusion & Perspectives

Step 2. Experimental design reconstruction

Idea

Extract pseudo-perturbation experiments from scRNAseq data given the PKN structure (Step 1) $\,$

Results 000000000000000 Conclusion & Perspectives

Step 2. Experimental design reconstruction

Idea

Extract pseudo-perturbation experiments from scRNAseq data given the PKN structure (Step 1)

Data preprocessing

Binarization of input + intermediate genes (k genes)

$$binarized = egin{cases} 0, & ext{if } raw < 2, \ 1, & ext{otherwise.} \end{cases}$$

Conclusion & Perspectives

Step 2. Experimental design reconstruction

Idea

Extract pseudo-perturbation experiments from scRNAseq data given the PKN structure (Step 1)

Data preprocessing

• Binarization of input + intermediate genes (k genes)

$$binarized = egin{cases} 0, & ext{if } \mathit{raw} < 2, \ 1, & ext{otherwise.} \end{cases}$$

 Normalization of readout genes (2 options) "Min-Max" normalization "Arctangeant" normalization

$$normalized = rac{raw - min}{max - min}$$
 $normalized = rac{2}{\pi} imes \arctan(raw)$

Conclusion & Perspectives

Step 2. Experimental design reconstruction

Idea

Extract pseudo-perturbation experiments from scRNAseq data given the PKN structure (Step 1)

• Normalization of readout genes (2 options) "Min-Max" normalization "Arctangeant" normalization normalized = $\frac{raw - min}{max - min}$ normalized = $\frac{2}{\pi} \times \arctan(raw)$

Mathieu Bolteau (LS2N)

Method 000000000 Results 000000000000000 Conclusion & Perspectives

Step 2. Pseudo-perturbation identification

- 3 selected genes: A, C, D (k = 3)
- Matching cells (1,5), (2,4) \leftarrow pseudo-perturbations
- Optimal number of pseudo-perturbations: 2

Mathieu Bolteau (LS2N)

Step 2. Pseudo-perturbations identification algorithm

Main rules (x4)

- k-genes: Select k genes among all possible combinations of input + intermediate genes.
- Reachability: input \rightarrow intermediate.
- Matching cells: Select pairs of cells (c₁, c₂), c₁ ∈ A, c₂ ∈ B, for which the (binarized) expression matches for each of the k-genes.
- Filter redundancy: The set of k (binarized) expressions should differ for all *matching cells* of the same class.

Optimization (x1)

• Maximize the number of *pseudo-perturbations*.

Results 00000000000000 Conclusion & Perspectives

Step 2. Maximizing the readouts difference

Redundancy

2 solutions:

- (1,5), (2,4)
- (3,5), (2,4)

Pseudo-perturbations representativity:

- Class A: 100% (3/3)
- Class B: 66% (2/3)

Results 00000000000000 Conclusion & Perspectives

Step 2. Maximizing the readouts difference

Redundancy

2 solutions:

- (1,5), (2,4)
- (3,5), (2,4)

Pseudo-perturbations representativity:

- Class A: 100% (3/3)
- Class B: 66% (2/3)

Readout difference maximization

1 4			- F			Class		Cell	Α	С	D				Class
	1 0	1	0.8	0.4	0.6	Α		5	1	0	1	0.7	0.8	0.5	В
2 1	1 1	0	0.2	0.5	0.3	А		4	1	1	0	0.6	0.1	0.2	В
readout diff(1,5) = 0.8-0.7 + 0.4-0.8 + 0.6-0.5 = 0.6															
VS															
readout diff(3.5) = $ 0.8-0.7 + 0.3-0.8 + 0.9-0.5 = 0.9$															
Cell	<u> </u>	U D	E.			Class		Cell	А	6	U				Class
3	1 0	1	0.8	0.3	0.9	Α		5	1	0	1	0.7	0.8	0.5	В
2	1 1	0	0.2	0.5	0.3	Α		4	1	1	0	0.6	0.1	0.2	В

Results 00000000000000 Conclusion & Perspectives

Step 2. Maximizing the readouts difference

Redundancy

2 solutions:

- (1,5), (2,4)
- (3,5), (2,4)

Pseudo-perturbations representativity:

- Class A: 100% (3/3)
- Class B: 66% (2/3)

Readout difference maximization

Introduction Method 00000000 Step 3. BNs inference using Caspo [Guziolowski et al. Bioinformatics, 2013.] Cell Class Class Cell 0.8 0.3 0.9 0.7 0.8 0.5 3 Α 5 В 2 0.2 0.5 0.3 Α 4 0.6 0.1 0.2 В Experimental design for Class A Experimental design for Class B PKN Learning Boolean Networks (Caspo) Familiv of Boolean Familiv of Boolean Networks for Class A Networks for Class B

Mathieu Bolteau (LS2N)

DEVSTEM Meeting

Tuesday, March 12th 2024 17 / 35

Reconstructed PKN – Max depth parameter [Bolteau et al., 2024, in prep.]

Input: 438 transcription factors involved in human embryonic dev.

2 values tested:

 $\begin{array}{ll} max \ depth = 2 \ (2 \ recursive \ queries) & \rightarrow PKN^2 \\ max \ depth = 0 \ (no \ depth, \ total \ reconstruction) & \rightarrow PKN^0 \end{array}$

PKN	#nodes	#edges	#inputs	#intermediates	#readouts	#protein-complexes
PKN^2	191	285	84	27	14	66
PKN^0	233	369	93	37	19	85

Results

Conclusion & Perspectives

Reconstructed PKN⁰

[Bolteau et al., 2024, in prep.]

- 233 nodes : inputs (85), intermediates (36), readouts (19)
- 369 edges

Results

Conclusion & Perspectives

Pseudo-perturbations identification

[Bolteau et al., 2024, in prep.]

k = 10 is the best value to maximize the number of pseudo-perturbations

Mathieu Bolteau (LS2N)

Results 00000000000000 Conclusion & Perspectives 0000

Pseudo-perturbations identification

[Bolteau et al., 2024, in prep.]

Inputs

- $#M^{TE}$ cells = 348
- $#L^{TE}$ cells = 332
- k = 10: 10 genes selected from 121 input and intermediate genes
- Search space: $\binom{121}{10} = 1.27 \times 10^{14}$ possible choices

7h 7 days 20 days #solutions=2 #solutions=7 #solutions=235 #solutions=2.179.441 30 #solutions=1.716.211 1020 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 1e6 Execution time (sec)

Convergence of the number of pseudo-pertubations over time.

Results 00000000000000 Conclusion & Perspectives

Pseudo-perturbations identification

[Bolteau et al., 2024, in prep.]

Inputs

- $#M^{TE}$ cells = 348
- $#L^{TE}$ cells = 332
- k = 10: 10 genes selected from 121 input and intermediate genes
- Search space: $\binom{121}{10} = 1.27 \times 10^{14}$ possible choices

7h 7 days 20 days 96 92 90 #solutions=2 #solutions=7 80 78 70 #solutions=235 60 50 43 #solutions=2.179.441 40 30 #solutions=1.716.211 20 10 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 1e6 Execution time (sec)

Convergence of the number of pseudo-pertubations over time.

Mathieu Bolteau (LS2N)

Method 000000000 Conclusion & Perspectives

Robustness of solutions

[Bolteau et al., 2024, in prep.]

- The more pseudo-perturbations we have, the fewer different genes we have in the solutions
- Gene number explosion when few pseudo-perturbations

 1 7 days of run on a computer cluster comprising 160 CPUs and 1.5 To of RAM

Method 000000000 Conclusion & Perspectives

Robustness of solutions

[Bolteau et al., 2024, in prep.]

- The more pseudo-perturbations we have, the fewer different genes we have in the solutions
- Gene number explosion when few pseudo-perturbations

 1 7 days of run on a computer cluster comprising 160 CPUs and 1.5 To of RAM

Mathieu Bolteau (LS2N)

Method 000000000 Results 000000000000000 Conclusion & Perspectives

96 pseudo-perturbations sub-optimal solution

- Number of solution = 2
- Different genes in solutions = 11

11 characteristic genes to have the same Boolean behavior in M^{TE} and L^{TE}

Results 00000000000000 Conclusion & Perspectives

Pseudo-perturbation representativity (redundancies)

Solution	M ^{TE} (%)	L ^{TE} (%)	Total (%)
1	266 (76%)	246 (74%)	512 (75%)
2	235 (68%)	248 (75%)	483 (71%)

- $#M^{TE} cells = 348$
- $#L^{TE} cells = 332$
- #*Total* cells = 680

On average, 73% of representativity for the total number of cell at each stage.

Results 00000000000000

Conclusion & Perspectives

Experimental designs

[Bolteau et al., 2024, in prep.]

 Conclusion & Perspectives

Learning Boolean logic models

[Bolteau et al., 2024, in prep.]

Meaning of "Optimal"

- Biological Property: consistency with experimental data
- Parsimony Principle: the minimal/simplest explanation

Caspo metrics – "Min-Max" normalization

[Bolteau et al., 2024, in prep.]

Solution	M	SE	Siz	ze	# Networks		
	M ^{TE}	L^{TE}	MTE	L^{TE}	MTE	L^{TE}	
1	0.1153	0.1413	1	12	1	1,496	
2	0.1180	0.1400	1	5	1	199	

MSE: distance between readout predictions through the BNs and the "real" readout values. Size: number of logic clauses.

#Networks: number of inferred (sub-)optimal BNs.

- Larger MSE for $L^{TE} \rightarrow L^{TE}$ more difficult to fit
- More redundancies for L^{TE} (number of BNs) \rightarrow different ways to explain the "entry-output" relation with Boolean gates
- *M^{TE}* size seem irrelevant

Method 000000000 Results 0000000000000000 Conclusion & Perspectives

Inferred BNs for solution 1 - "Min-Max" normalization

- More readouts implicated in L^{TE} stage
- Greater BNs variability for $L^{TE} \rightarrow$ Gain of function
- M^{TE} BNs family biologically irrelevant

Results 0000000000000000 Conclusion & Perspectives

Caspo metrics - "Artangeant" normalization [Bolteau et al., 2024, in prep.]

Solution	M	SE	Siz	ze	#Networks		
	M ^{TE}	L^{TE}	M ^{TE}	L^{TE}	MTE	L^{TE}	
1	0.2218	0.2416	23	15	1	2	
2	0.2242	0.2516	21	16	214	70	

MSE: distance between readout predictions through the BNs and the "real" readout values. Size: number of logic clauses.

#Networks: number of inferred (sub-)optimal BNs.

- Larger MSE for $L^{TE} \rightarrow L^{TE}$ more difficult to fit
- Size and #BNs greater for M^{TE}

Method 000000000 Results 00000000000000

Conclusion & Perspectives

Inferred BNs for solution 1 - "Arctangeant" normalization

Disconnected BNs

Need for in-depth analysis

Method 000000000 Results 000000000000 Conclusion & Perspectives

Inferred BNs for solution 2 - "Arctangeant" normalization

- More inputs implicated in M^{TE} stage, same number of intermediates and readouts
- Greater BNs variability for M^{TE}

Conclusion & Perspectives •000

Conclusion

Pseudo-perturbation generation

- Efficient algorithm to select cells and genes to generate pseudo-perturbations \rightarrow 92 pseudo-perturbations in 7 hours
- Robustness of the generated solutions \rightarrow from +2 millions of solutions to only 2
- Expression of 11 genes across 96 cells are representative of the cell populations (e.g. 72% in M^{TE} and 73% in L^{TE})
- Our method deals with single cell data and its specificities (redundancy and sparsity)

General method

- Proposed a method that learns Boolean networks of 2 stages using scRNAseq data and Prior Knowledge
- Case-study adaptable method: optional PKN reconstruction step
- Mechanisms of TF-gene regulations distinguishing 2 developmental stages
- Complementarity with the state of the art
 - Boolean models without using perturbations
 - Method taking into account the diverse states of cell population

Perspectives

- Deepen the results obtained for the normalization "Arctangeant"
- A more accurate PKN
- Study the impact of different discretization methods
- Apply the method on other developmental stages (different cell fate)

Conclusion & Perspectives 0000

Aknowledgements

- Jérémie Bourdon @LS2N, Nantes University
- Carito Guziolowski @LS2N, Centrale Nantes
- Laurent David @CR2TI, CHU de Nantes, Nantes University
- ANR AIBY4 & ANR BOOSTIVF

