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Introduction Method Results Conclusion & Perspectives

Motivations

Need to better understand preimplantation development
(especially cell fate transition)

Research on human embryos is limited (experiments, law, ethics)

↓
In silico predictive model of the cell fate transition

during the human preimplantation development
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Human embryonic development
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Introduction Method Results Conclusion & Perspectives

Background [Meistermann, et al. Cell Stem Cell, 2021]

scRNAseq data from multiple stage embryos
Expression of ∼ 20, 000 genes in ∼ 1, 700 cells from 128 multi-stage embryos

Principal results
• Clustering of cells

• Identification of gene modules → 438 transcription factors (TFs)

• Pseudotime evolution of cells at different developmental stages
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Introduction Method Results Conclusion & Perspectives

Concepts

Prior-Knowledge Network (PKN)

Signed and oriented graph, where nodes correspond to biological entities (e.g.,
genes, proteins), and edges represent causal or functional relationships between
these entities . [Radulescu et al., JRSI, 2006]

Boolean Network (BN)

A Boolean network B, of dimension n is defined as B = (N,F ) where:
N = {v1, . . . , vn} is a finite set of nodes (variables or genes) and F = {f1, . . . , fn}
is a set of Boolean functions fi : Bn → B, with B = {0, 1}, describing the
evolution of variable vi . [Kauffman, JTB, 1969]

Pseudo-perturbation

Boolean vector that encodes the expression status of a set of k genes within a
particular cell. A pseudo-perturbation of a cell in a class matches with a second
pseudo-perturbation from another class. [Bolteau et al., JCB, submitted]
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Concepts

Answer Set Programming (ASP)

A declarative programming paradigm used to solve difficult (primarily NP-hard)
search problems. It is based on rules and constraints permitting to restrict the
problem from an initial solution set. [Baral, Cambridge University Press, 2003]

<head> :- <body>.

An example: select only “medium TE” and “late TE” cells

1 % Facts representing the knowledge

2 cell(c1). cell(c2). cell(c3). % 3 cells

3 class(early_TE). class(medium_TE). class(late_TE). % 3 classes

4 be_part(c1,early_TE). be_part(c2,medium_TE). be_part(c3,late_TE).

5 % Generate all possible set of selected cells

6 {sel_cell(C,CL) : cell(C), be_part(C,CL)}.
7 % Forbid answers with early TE class sel_cell()

8 :-sel_cell(_,early_TE).

9 % Print selected cells

10 #show sel_cell/4.
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State of the art – modeling of single data

Data analysis
• Statistical, e.g. weighted correlation network analysis (WGCNA [Langfelder & Horvath,

BMC Bioinformatics, 2008])

• Machine learning, e.g. reverse graph embedding (pseudotime [Qiu et al., Nature Methods,

2017]), uniform manifold approximation and projection (UMAP [McInnes et al., arXiv

preprint, 2018])

Network inference
• Correlation, e.g. gene regulatory network (GRN) inference (SCENIC [Aibar et al., Nat

Methods, 2017])

Modeling
• Dynamic Boolean models via BoNesis requires average of gene expression and prior

knowledge [Chevalier et al., ICTAI, 2019]

• Mouse embryo development computational models requires genetic perturbations
and knockdowns [Dunn et al., EMBO journal, 2019]
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Goal: Boolean models of embryonic developmental stages

Challenges

• Single cell data specifity: sparsity and redundancy

• High dimensional data: ∼ 20, 000 genes for ∼ 1, 700 cells

• Unavailable perturbations

Proposed solution [Bolteau et al. ISBRA’23, 2023.]

• Distinguish between two developmental stages

• Build specific network models for each stage

• Identify regulatory mechanisms that differentiate both models

• Application on TE maturation: medium (MTE ) and late (LTE ) TE
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Pipeline [Bolteau et al. ISBRA’23, 2023.]

Gene list

PKN construction

Gene expression
data

Pseudo-perturbation
generation

Pseudo-
perturbations

BNs inference

Families of
Boolean networks

Readouts difference
maximization

Experimental
designs

PKN

PKN reconstruction Experimental design construction

BNs inference
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Learning predictive models

• Signed and directed causal interactions among genes

• Gene expression for a developmental stage
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Step 1. PKN reconstruction
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Step 1. PKN reconstruction

Query on PathwayCommons database, via
pyBRAvo [Lefebvre et al. Database, 2021]

Parameter: max depth

Output PKN
• Labeled (activation/inhibition) and oriented graph

• Nodes: genes (inputs + intermediates + readouts),
protein-complexes

• Edges: Transcription regulation

→ inputs & intermediates genes: entry for experimental
design (Step 2)
→ readouts genes: output for experimental design (Step 2)

pyBRAvo
tool

PathwayCommons

ZSCAN4 LEF1

OTX2 ZEB1

DNMT1 DUXA

ARGFX HEY1

KLF17 KLF11

IGF1R SNAI1

POU5F1B SOX2

Genes list

PKN
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Step 2. Experimental design reconstruction

Idea

Extract pseudo-perturbation experiments from scRNAseq data given the
PKN structure (Step 1)

Data preprocessing

• Binarization of input + intermediate genes (k genes)

binarized =

{
0, if raw < 2,

1, otherwise.

• Normalization of readout genes (2 options)
“Min-Max” normalization

normalized =
raw −min

max −min

“Arctangeant” normalization

normalized =
2

π
× arctan(raw)
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Step 2. Pseudo-perturbation identification

Cell A B C D E F G H Class
1 1 1 0 1 0 0.8 0.4 0.6 A
2 1 0 1 0 0 0.2 0.5 0.3 A
3 1 1 0 1 1 0.8 0.3 0.9 A
4 1 1 1 0 1 0.6 0.1 0.2 B
5 1 0 0 1 1 0.7 0.8 0.5 B
6 0 0 1 0 1 0.7 0.2 0.3 B

ASP program
k=3

Selected genes: A, C & D

Inputs + Intermediates Readouts

Cell A C D F G H Class
1 1 0 1 0.8 0.4 0.6 A
2 1 1 0 0.2 0.5 0.3 A

Cell A C D F G H Class
5 1 0 1 0.7 0.8 0.5 B
4 1 1 0 0.6 0.1 0.2 B

• 3 selected genes: A, C, D (k = 3)
• Matching cells (1,5), (2,4) ← pseudo-perturbations
• Optimal number of pseudo-perturbations: 2
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Step 2. Pseudo-perturbations identification algorithm

Main rules (x4)

• k-genes: Select k genes among all possible combinations of input +
intermediate genes.

• Reachability: input → intermediate.

• Matching cells: Select pairs of cells (c1, c2), c1 ∈ A, c2 ∈ B, for which
the (binarized) expression matches for each of the k-genes.

• Filter redundancy: The set of k (binarized) expressions should differ
for all matching cells of the same class.

Optimization (x1)

• Maximize the number of pseudo-perturbations.
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Step 2. Maximizing the readouts difference

Redundancy

2 solutions:

• (1,5), (2,4)

• (3,5), (2,4)

Pseudo-perturbations representativity:

• Class A: 100% (3/3)

• Class B: 66% (2/3)

Readout difference maximization
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Step 3. BNs inference using Caspo [Guziolowski et al. Bioinformatics, 2013.]

PKN

Learning Boolean Networks 
(Caspo)

Experimental design for Class A

Cell A C D F G H Class
3 1 0 1 0.8 0.3 0.9 A
2 1 1 0 0.2 0.5 0.3 A

Experimental design for Class B

Cell A C D F G H Class
5 1 0 1 0.7 0.8 0.5 B
4 1 1 0 0.6 0.1 0.2 B

Familiy of Boolean 
Networks  for Class B

Familiy of Boolean 
Networks  for Class A
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Reconstructed PKN – Max depth parameter [Bolteau et al., 2024, in prep.]

Input: 438 transcription factors involved in human embryonic dev.

2 values tested:

max depth = 2 (2 recursive queries) → PKN2

max depth = 0 (no depth, total reconstruction) → PKN0

PKN #nodes #edges #inputs #intermediates #readouts #protein-complexes
PKN2 191 285 84 27 14 66
PKN0 233 369 93 37 19 85
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Reconstructed PKN0
[Bolteau et al., 2024, in prep.]

• 233 nodes : inputs (85), intermediates (36), readouts (19)

• 369 edges
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Pseudo-perturbations identification [Bolteau et al., 2024, in prep.]

Exploration of the k-genes parameter

k = 10 is the best value to maximize the number of pseudo-perturbations
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Pseudo-perturbations identification [Bolteau et al., 2024, in prep.]

Inputs
• #MTE cells = 348

• #LTE cells = 332

• k = 10: 10 genes selected from 121 input and intermediate genes

• Search space:
(121
10

)
= 1.27x1014 possible choices
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#solutions=1,716,211

#solutions=2,179,441
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#solutions=7
#solutions=2

Convergence of the number of
pseudo-pertubations over time.
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Robustness of solutions [Bolteau et al., 2024, in prep.]

• The more pseudo-perturbations we have, the fewer different genes we have in the solutions

• Gene number explosion when few pseudo-perturbations

1 7 days of run on a computer cluster comprising 160 CPUs and 1.5 To of RAM

Mathieu Bolteau (LS2N) DEVSTEM Meeting Tuesday, March 12th 2024 22 / 35



Introduction Method Results Conclusion & Perspectives

Robustness of solutions [Bolteau et al., 2024, in prep.]

• The more pseudo-perturbations we have, the fewer different genes we have in the solutions

• Gene number explosion when few pseudo-perturbations

1 7 days of run on a computer cluster comprising 160 CPUs and 1.5 To of RAM

Mathieu Bolteau (LS2N) DEVSTEM Meeting Tuesday, March 12th 2024 22 / 35



Introduction Method Results Conclusion & Perspectives

96 pseudo-perturbations sub-optimal solution

• Number of solution = 2

• Different genes in solutions = 11

11 characteristic genes
to have the same Boolean behavior in MTE and LTE
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Pseudo-perturbation representativity (redundancies)

Solution MTE (%) LTE (%) Total (%)

1 266 (76%) 246 (74%) 512 (75%)
2 235 (68%) 248 (75%) 483 (71%)

• #MTEcells = 348

• #LTEcells = 332

• #Total cells = 680

On average, 73% of representativity for the total number of cell
at each stage.
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Experimental designs [Bolteau et al., 2024, in prep.]
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Learning Boolean logic models [Bolteau et al., 2024, in prep.]

Meaning of “Optimal”

• Biological Property: consistency with experimental data

• Parsimony Principle: the minimal/simplest explanation
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Caspo metrics – “Min-Max” normalization [Bolteau et al., 2024, in prep.]

Solution MSE Size #Networks

MTE LTE MTE LTE MTE LTE

1 0.1153 0.1413 1 12 1 1,496
2 0.1180 0.1400 1 5 1 199

MSE: distance between readout predictions through the BNs and the “real” readout values.
Size: number of logic clauses.

#Networks: number of inferred (sub-)optimal BNs.

• Larger MSE for LTE → LTE more difficult to fit

• More redundancies for LTE (number of BNs) → different ways to explain the
“entry-output” relation with Boolean gates

• MTE size seem irrelevant
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Inferred BNs for solution 1 – “Min-Max” normalization

CD4

.

C21orf33

E2F1

MYB

MYC

.. .

.. . .

. .

.

MYC/Max

PSAT1

... .

DDIT3

MYC/Max/MIZ-1

.

TCF4

.

. .

. . .

.

.
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.

.

.

JUN/FOS

ATF2/JUN

TERT

.. . . .

.E2F1/DP
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JUN/JUND

.

. .

. .

RBL1

. . . .

. . .

FOS

PCBP4

.

..

STK11 SKI

. EGR1

SMARCE1ELK1

CEBPB

input intermediate readout

activation inhibition

Medium TE stage 
BNs family

Late TE stage BNs family

“AND” gate

MSE = 0.1153
Size = 1
#BNs = 1

MSE = 0.1413
Size = 12
#BNs = 1,496

PSAT1

SMARCE1

• More readouts implicated in LTE stage

• Greater BNs variability for LTE → Gain of function

• MTE BNs family biologically irrelevant
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Caspo metrics – “Artangeant” normalization [Bolteau et al., 2024, in prep.]

Solution MSE Size #Networks

MTE LTE MTE LTE MTE LTE

1 0.2218 0.2416 23 15 1 2
2 0.2242 0.2516 21 16 214 70

MSE: distance between readout predictions through the BNs and the “real” readout values.
Size: number of logic clauses.

#Networks: number of inferred (sub-)optimal BNs.

• Larger MSE for LTE → LTE more difficult to fit

• Size and #BNs greater for MTE
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Inferred BNs for solution 1 – “Arctangeant” normalization

Medium TE stage BNs family Late TE stage BNs family

MSE = 0.2218
Size = 23
#BNs = 1

MSE = 0.2416
Size = 15
#BNs = 2

input intermediate readout

activation inhibition“AND” gate

DDIT3

MYC/Max/MIZ-1

CEBPD

MYC

MYC/Max

CEBPB

JUN

ATF2/JUN .
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GSR SKI
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.
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• Disconnected BNs

• Need for in-depth analysis
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Inferred BNs for solution 2 – “Arctangeant” normalization

FOS

JUN/FOS

SMAD3/SMAD4/JUN/FOS

ELK1

EGR1

MYC/Max/MIZ-1

CEBPD

DDIT3

.

MYC

MYC/Max

E2F1

MYB

C21orf33

. . ..

PCBP4

.

.

SKI

. .

.

.

JUN/JUNDTERT

.

STK11

TCF4

PSAT1

.

.

JUN

ATF2/JUN

.

GSR

CEBPB

ATF3

SMARCE1

Medium TE stage BNs family Late TE stage BNs family

MSE = 0.2242
Size = 21
#BNs = 214

MSE = 0.2516
Size = 16
#BNs = 70

input intermediate readout

activation inhibition“AND” gate

FOS

JUN/FOS

SMAD3/SMAD4/JUN/FOS

ELK1

EGR1

MYC/Max/MIZ-1

CEBPD

DDIT3

.

MYC

MYC/Max

E2F1

MYB.

C21orf33

. .

. .

CEBPB

TERT

..

JUN

JUN/JUND

ATF2/JUN

PSAT1

.

TCF4

GSRATF3

SMARCE1

• More inputs implicated in MTE stage, same number of intermediates and readouts

• Greater BNs variability for MTE
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Conclusion

Pseudo-perturbation generation

• Efficient algorithm to select cells and genes to generate pseudo-perturbations
→ 92 pseudo-perturbations in 7 hours

• Robustness of the generated solutions → from +2 millions of solutions to only 2
• Expression of 11 genes across 96 cells are representative of the cell populations

(e.g. 72% in MTE and 73% in LTE )
• Our method deals with single cell data and its specificities (redundancy and sparsity)

General method

• Proposed a method that learns Boolean networks of 2 stages using scRNAseq data
and Prior Knowledge

• Case-study adaptable method: optional PKN reconstruction step

• Mechanisms of TF-gene regulations distinguishing 2 developmental stages

• Complementarity with the state of the art

• Boolean models without using perturbations
• Method taking into account the diverse states of cell population
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Perspectives

• Deepen the results obtained for the normalization ”Arctangeant”

• A more accurate PKN

• Study the impact of different discretization methods

• Apply the method on other developmental stages (different cell fate)
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