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Need to better understand preimplantation development
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Introduction
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Motivations

Need to better understand preimplantation development

Research on human embryos is limited (experiments, law, ethics)

!

In silico predictive model of human embryonic development
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Human embryonic development
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Adapted from Meistermann, Ph.D. thesis, 2020
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BaCkgrOU nd [Meistermann, et al., Cell Stem Cell, 2021]

scRNAseq data from multiple stage embryos
Expression of ~ 20,000 genes in ~ 1,700 cells from 128 multi-stage embryos

Previous results (in house)

® Clustering of cells
® |dentification of gene modules — 438 transcription factors (TFs)

® Pseudotime evolution of cells at different developmental stages

UMAP cluster
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Meistermann, et al., Cell Stem Cell, 2021
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State of the art — modeling of single-cell data

Data analysis

® Statistical, e.g. weighted correlation network analysis (WGCNA [Langfelder & Horvath,
BMC Bioinformatics, 2008])

® Machine learning, e.g. reverse graph embedding (pseudotime [Qiu et al., Nature Methods,
2017]), uniform manifold approximation and projection (UMAP [Mcinnes et a., arxiv
preprint, 2018])
Network inference
® Correlation, e.g. gene regulatory network (GRN) inference (SCENIC [Aibar et al., Nat
Methods, 2017])
Modeling

® Dynamic Boolean models requires average of gene expression and prior knowledge
(BoNesis [Chevalier et al., ICTAI, 2019])

® Mouse embryo development computational models requires genetic perturbations
and knockdowns [Dunn et al., EMBO journal, 2019
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Goal: Boolean models of embryonic developmental stages

Challenges
® Single cell data specifities: sparsity and redundancy
® High dimensional data: ~ 20,000 genes for ~ 1,700 cells

® Unavailable perturbations
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Goal: Boolean models of embryonic developmental stages

Challenges

® Single cell data specifities: sparsity and redundancy

® High dimensional data: ~ 20,000 genes for ~ 1,700 cells

® Unavailable perturbations

Proposed solution

® Distinguish between two developmental stages

® Build families of network models for each stage

® |dentify regulatory mechanisms that differentiate both models
and representing multiple cells

® Application on medium (M'F) and late (L"F) trophectoderm stages
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Pipeline

PKN reconstruction Experimental design construction

Gene expression

data
Gene list }— Pseudo-perturbation
generation
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Learning predictive models

Entries Outputs
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Network
® Signed and directed causal interactions among genes

® Gene expression for a developmental stage
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Step 1. PKN reconstruction

Query on PathwayCommons database, o,
via (ln house) pyBRAVO tOOl [Lefebvre et al., Database, 2021] [
Genes list
Output PKN v!} p
PathwayCommons
® Labeled (activation/inhibition) and oriented graph /
fyBRAVO
® Nodes: genes ( + intermediates + readouts), =

protein-complexes

® Edges: Transcription regulation

' »
— and intermediate genes: entry for experimental TL

design (Step 2)

— readout genes: output for experimental design (Step 2)
PKN
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Step 2. Experimental design reconstruction

Extract pseudo-perturbation experiments from scRNAseq data given the
PKN structure (Step 1)

Data preprocessing

® Binarization of + intermediate genes. Basic approach: gene is
expressed (1) if at least 2 reads are present; else it is absent (0).

® Normalization of readout genes.
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Step 2.Pseudo-perturbation generation

Inputs + intermediates  Readouts
A A

1 1 1 o 1 0 08 04 06 A

2 1 0 1 0 0 02 05 03 A

3 1 1 0 1 1 08 03 09 A

4 1 1 1 0 1 06 01 02 B

5 1 0 0 1 1 07 08 05 B

6 0 0 1 0 1 07 02 03 B

l Logic program
in ASP

cor TATC 0 Em | RO (Class
1 1 0 1 08 04 06 A 5 1 0 1 07 08 05 B
2 1 1 0 02 05 03 A 4 1 1 0 06 01 02 B

3 selected genes: A, C, D (k = 3)
Matching cells: (1,5), (2,4) < pseudo-perturbations

Different guaranteed pseudo-perturbation vector

Optimal number of matching cells: 2
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Step 2. Maximizing the readout difference

1 — _©® 4 N. of matching cells: 2 (max)

_— T Solution 1: (1,5), (2,4)
i Solution 2 : (3,5), (2,4)

e Cell representativity:
i Class A : 3 out of 3 (100%)
| GlEEA beeza Class B : 2 out of 3 (66%)
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Step 2. Maximizing the readout difference

1 @—__ e 4 N. of matching cells: 2 (max)
, ,,f"""::-iﬁ"“j*:>~ 5 Solution 1: (1,5), (2,4)
o Solution 2 : (3,5), (2,4)

e Cell representativity:
i Class A : 3 out of 3 (100%)
| GlEEA beeza Class B : 2 out of 3 (66%)

1 0 1 08 04 06 A

5 1 0 1 07 08 05 B

1 0 1 08 03 09 A
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Cell_| | D |
0o 1
1

Ste p 3 5 B N S I nfe ren Ce u SI ng CaSpO [Guziolowski et al., Bioinformatics, 2013]

0.8 03 09 A 5 1 0 1 07 08 05 B
0 02 05 03 A 4 1 1
Experimental design for Class A

0 06 01 02 B

2 1

Experimental design for Class B
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Learning Boolean \

Networks (Caspo)
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Reconstructed PKN

® From 438 TFs

® 233 nodes : , intermediates (36), readouts (19)

® 369 edges
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Pseudo-perturbations

Inputs
o AMTE cells = 348
o 4| TE cells =332

® k =10: 10 genes selected from 121

® Complexity: 8.01 x 1034793
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Pseudo-perturbations search

Inputs
o AMTE cells = 348
o 4| TE cells =332
® k =10: 10 genes selected from 121 and intermediate genes
® Complexity: 8.01 x 1034793
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96 pseudo-perturbations sub-optimal solution

® Number of solution = 2

® Different genes in solutions = 11
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% of presence in solutions

0 PCBP4 TCF4 EGR1 ELK1 JUN STK11 FOS NFATC2 C2lorf33 SKI SMARCE1

Gene

11 characteristic genes
to have the same Boolean behavior in MTE and LTE
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Cell representativity (redundancies)

Solution | MTE (%) | L™E (%) | Total (%)

1 266 (76%) | 246 (74%) | 512 (75%)
2 235 (68%) | 248 (75%) | 483 (71%)

o LAMTEcells = 348
o 4 TEcells = 332 ® 96 pseudo-perturbations
® 4 Total cells = 680

On average, 73% of representativity for the total number of cell
at each stage.
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Inferred BNs families for solution 1

Medium TE stage
BNs family -

MSE = 0.1159
Size = 6
#BNs =5

MSE = 0.1410
Size = 20
#BNs = 17797

® Greater BNs variability for LTE — Gain of function

® LTE seems more unstable (number of BNs) — transition from L7E to another stage
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Conclusion

Pseudo-perturbation generation

® Efficient algorithm to select cells and genes to generate pseudo-perturbations
— 92 pseudo-perturbations in 7h
Robustness of the generated solutions — from +2 millions of solutions to only 2
Discovery of 11 genes whose on/off values remain identical for 96 cells across 2
classes

® Expression of 11 genes across 96 cells are representative of the cell populations
(e.g. 72% in M'E and 73% in LTF)

® Qur method deals with single cell data and its specificities (redundancy and sparsity)

General method

® A method that learns Boolean networks of 2 stages using scRNAseq data and PKN
® Mechanisms of TF-gene regulations distinguishing 2 developmental stages

® Overall approach achieves a good computational time (~ 1 day)

® Complementarity with the state of the art

® Boolean models without using perturbations
® Method taking into account the diverse states of cell population
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