Boolean networks as a framework to model human preimplantation development

Mathieu Bolteau¹ J érémie Bourdon¹ Laurent David² Carito Guziolowski¹

 1 Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000 Nantes, France

 2 Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France

ISMB/ECCB 2023

Thursday, July 27th

Need to better understand preimplantation development

Need to better understand preimplantation development

Research on human embryos is limited (experiments, law, ethics) ↓

In silico predictive model of human embryonic development

Motivations

Human embryonic development

Background [Meistermann, et al., Cell Stem Cell, 2021]

scRNAseq data from multiple stage embryos

Expression of \sim 20,000 genes in \sim 1,700 cells from 128 multi-stage embryos

Previous results (in house)

- Clustering of cells
- Identification of gene modules \rightarrow 438 transcription factors (TFs)
- Pseudotime evolution of cells at different developmental stages

State of the art – modeling of single-cell data

Data analysis

- Statistical, e.g. weighted correlation network analysis (WGCNA [Langfelder & Horvath, BMC Bioinformatics, 2008])
- Machine learning, e.g. reverse graph embedding (pseudotime $[Q_{i}u_{i} e_{i} a_{i}]$, Nature Methods, 2017), uniform manifold approximation and projection (UMAP [McInnes et al., arXiv preprint, 2018])

Network inference

• Correlation, e.g. gene regulatory network (GRN) inference (SCENIC [Aibar et al., Nat Methods, 2017])

Modeling

- Dynamic Boolean models requires average of gene expression and prior knowledge (BoNesis [Chevalier et al., ICTAI, 2019])
- Mouse embryo development computational models requires genetic perturbations and knockdowns [Dunn et al., EMBO journal, 2019]

Goal: Boolean models of embryonic developmental stages

Challenges

- Single cell data specifities: sparsity and redundancy
- High dimensional data: \sim 20,000 genes for \sim 1,700 cells
- Unavailable perturbations

Goal: Boolean models of embryonic developmental stages

Challenges

- Single cell data specifities: sparsity and redundancy
- High dimensional data: \sim 20,000 genes for \sim 1,700 cells
- Unavailable perturbations

Proposed solution

- Distinguish between two developmental stages
- Build families of network models for each stage
- Identify regulatory mechanisms that differentiate both models and representing multiple cells
- Application on medium (M^{TE}) and late (L^{TE}) trophectoderm stages

Pipeline

Learning predictive models

- Signed and directed causal interactions among genes
- Gene expression for a developmental stage

Step 1. PKN reconstruction

Query on PathwayCommons database, via (in house) pyBRAvo tool [Lefebvre et al., Database, 2021]

Output PKN

- Labeled (activation/inhibition) and oriented graph
- Nodes: genes $($ inputs + intermediates + readouts), protein-complexes
- Edges: Transcription regulation

 \rightarrow input and intermediate genes: entry for experimental design (Step 2)

 \rightarrow readout genes: output for experimental design (Step 2)

Step 2. Experimental design reconstruction

Idea

Extract pseudo-perturbation experiments from scRNAseq data given the PKN structure (Step 1)

Data preprocessing

- Binarization of input $+$ intermediate genes. Basic approach: gene is expressed (1) if at least 2 reads are present; else it is absent (0).
- Normalization of readout genes.

Step 2.Pseudo-perturbation generation

- 3 selected genes: A, C, D $(k = 3)$
- Matching cells: (1,5), (2,4) \leftarrow pseudo-perturbations
- Different guaranteed pseudo-perturbation vector
- Optimal number of matching cells: 2

Step 2. Maximizing the readout difference

Redundancy

Step². Maximizing the readout difference

Redundancy

Step 3. BNs inference using Caspo [Guziolowski et al., Bioinformatics, 2013]

Experimental design for Class A

Experimental design for Class B

Reconstructed PKN

- From 438 TFs
- 233 nodes : inputs (85), intermediates (36), readouts (19)
- 369 edges

Pseudo-perturbations search

Inputs

- $\#M^{TE}$ cells = 348
- $\#L^{TE}$ cells $= 332$
- $k = 10$: 10 genes selected from 121 input and intermediate genes
- Complexity: 8.01×10^{34793}

Convergence of the number of pseudo-pertubations over time.

Pseudo-perturbations search

Inputs

- $\#M^{TE}$ cells = 348
- $\#L^{TE}$ cells $= 332$
- $k = 10$: 10 genes selected from 121 input and intermediate genes
- Complexity: 8.01×10^{34793}

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 Execution time (sec) 1e6 $10 - \frac{20}{10}$ 30 40 50 ㅓ 60 70 + 80.1 90 Number of pseudo-pseudo
Number of pseudo
3. g
alis.
at 92 96 7h 7 days 20 days 43 ដូ 78 ခွ #solutions=1,716,211 #solutions=2,179,441 #solutions=235 #solutions=7 #solutions=2

Convergence of the number of pseudo-pertubations over time.

96 pseudo-perturbations sub-optimal solution

- Number of solution $= 2$
- Different genes in solutions $= 11$

11 characteristic genes to have the same Boolean behavior in M^{TE} and L^{TE}

- $\#M^{TE}$ cells = 348
- $\#L^{TE}$ cells = 332
- # Total cells = 680

96 pseudo-perturbations

On average, 73% of representativity for the total number of cell at each stage.

Inferred BNs families for solution 1

- Greater BNs variability for $L^{TE} \rightarrow$ Gain of function
- L^{TE} seems more unstable (number of BNs) \rightarrow transition from L^{TE} to another stage

Conclusion

Pseudo-perturbation generation

- Efficient algorithm to select cells and genes to generate pseudo-perturbations \rightarrow 92 pseudo-perturbations in 7h
- Robustness of the generated solutions \rightarrow from $+2$ millions of solutions to only 2
- Discovery of 11 genes whose on/off values remain identical for 96 cells across 2 classes
- Expression of 11 genes across 96 cells are representative of the cell populations (e.g. 72% in M^{TE} and 73% in L^{TE})
- Our method deals with single cell data and its specificities (redundancy and sparsity)

General method

- A method that learns Boolean networks of 2 stages using scRNAseq data and PKN
- Mechanisms of TF-gene regulations distinguishing 2 developmental stages
- Overall approach achieves a good computational time (~ 1 day)
- Complementarity with the state of the art
	- Boolean models without using perturbations
	- Method taking into account the diverse states of cell population

Aknowledgements

- Jérémie Bourdon @LS2N, Nantes University
- Carito Guziolowski @LS2N, Centrale Nantes
- Laurent David @CR2TI, Nantes University Hospital, Nantes University
- ANR AIBY4 & ANR BOOSTIVF

