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2Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR

1064, F-44000 Nantes, France

ISMB/ECCB 2023

Thursday, July 27th



Introduction Method Results Conclusion

Motivations

Need to better understand preimplantation development

Research on human embryos is limited (experiments, law, ethics)

↓
In silico predictive model of human embryonic development
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Human embryonic development
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Background [Meistermann, et al., Cell Stem Cell, 2021]

scRNAseq data from multiple stage embryos
Expression of ∼ 20, 000 genes in ∼ 1, 700 cells from 128 multi-stage embryos

Previous results (in house)
• Clustering of cells

• Identification of gene modules → 438 transcription factors (TFs)

• Pseudotime evolution of cells at different developmental stages
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State of the art – modeling of single-cell data

Data analysis
• Statistical, e.g. weighted correlation network analysis (WGCNA [Langfelder & Horvath,

BMC Bioinformatics, 2008])

• Machine learning, e.g. reverse graph embedding (pseudotime [Qiu et al., Nature Methods,

2017]), uniform manifold approximation and projection (UMAP [McInnes et al., arXiv

preprint, 2018])

Network inference
• Correlation, e.g. gene regulatory network (GRN) inference (SCENIC [Aibar et al., Nat

Methods, 2017])

Modeling
• Dynamic Boolean models requires average of gene expression and prior knowledge

(BoNesis [Chevalier et al., ICTAI, 2019])

• Mouse embryo development computational models requires genetic perturbations
and knockdowns [Dunn et al., EMBO journal, 2019]
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Goal: Boolean models of embryonic developmental stages

Challenges

• Single cell data specifities: sparsity and redundancy

• High dimensional data: ∼ 20, 000 genes for ∼ 1, 700 cells

• Unavailable perturbations

Proposed solution

• Distinguish between two developmental stages

• Build families of network models for each stage

• Identify regulatory mechanisms that differentiate both models
and representing multiple cells

• Application on medium (MTE ) and late (LTE ) trophectoderm stages
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Pipeline
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PKN construction

Gene expression
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Learning predictive models

• Signed and directed causal interactions among genes

• Gene expression for a developmental stage
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Step 1. PKN reconstruction

Query on PathwayCommons database,
via (in house) pyBRAvo tool [Lefebvre et al., Database, 2021]

Output PKN
• Labeled (activation/inhibition) and oriented graph

• Nodes: genes (inputs + intermediates + readouts),
protein-complexes

• Edges: Transcription regulation

→ input and intermediate genes: entry for experimental
design (Step 2)
→ readout genes: output for experimental design (Step 2)
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Step 2. Experimental design reconstruction

Idea

Extract pseudo-perturbation experiments from scRNAseq data given the
PKN structure (Step 1)

Data preprocessing

• Binarization of input + intermediate genes. Basic approach: gene is
expressed (1) if at least 2 reads are present; else it is absent (0).

• Normalization of readout genes.
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Step 2.Pseudo-perturbation generation

• 3 selected genes: A, C, D (k = 3)

• Matching cells: (1,5), (2,4) ← pseudo-perturbations

• Different guaranteed pseudo-perturbation vector

• Optimal number of matching cells: 2
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Step 2. Maximizing the readout difference

Redundancy

Readout difference maximization
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Step 3. BNs inference using Caspo [Guziolowski et al., Bioinformatics, 2013]
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Reconstructed PKN

• From 438 TFs

• 233 nodes : inputs (85), intermediates (36), readouts (19)

• 369 edges
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Pseudo-perturbations search

Inputs
• #MTE cells = 348

• #LTE cells = 332

• k = 10: 10 genes selected from 121 input and intermediate genes

• Complexity: 8.01× 1034793
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96 pseudo-perturbations sub-optimal solution

• Number of solution = 2

• Different genes in solutions = 11

11 characteristic genes
to have the same Boolean behavior in MTE and LTE
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Cell representativity (redundancies)

Solution MTE (%) LTE (%) Total (%)

1 266 (76%) 246 (74%) 512 (75%)
2 235 (68%) 248 (75%) 483 (71%)

• #MTEcells = 348

• #LTEcells = 332

• #Total cells = 680

• 96 pseudo-perturbations

On average, 73% of representativity for the total number of cell
at each stage.
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Inferred BNs families for solution 1
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• Greater BNs variability for LTE → Gain of function

• LTE seems more unstable (number of BNs) → transition from LTE to another stage
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Conclusion

Pseudo-perturbation generation

• Efficient algorithm to select cells and genes to generate pseudo-perturbations
→ 92 pseudo-perturbations in 7h

• Robustness of the generated solutions → from +2 millions of solutions to only 2
• Discovery of 11 genes whose on/off values remain identical for 96 cells across 2

classes
• Expression of 11 genes across 96 cells are representative of the cell populations

(e.g. 72% in MTE and 73% in LTE )
• Our method deals with single cell data and its specificities (redundancy and sparsity)

General method

• A method that learns Boolean networks of 2 stages using scRNAseq data and PKN

• Mechanisms of TF-gene regulations distinguishing 2 developmental stages

• Overall approach achieves a good computational time (∼ 1 day)

• Complementarity with the state of the art

• Boolean models without using perturbations
• Method taking into account the diverse states of cell population
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