Boolean networks as a framework to model human preimplantation development

Jérémie Bourdon¹ <u>Mathieu Bolteau</u>¹ Laurent David² Carito Guziolowski¹

¹Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000 Nantes, France

²Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France

ISMB/ECCB 2023

Thursday, July 27th

Introduction	Method	Results	Conclusion
●0000	000000	00000	00
Motivations			

Need to better understand preimplantation development

Introduction	Method	Results	Conclusion
●0000	000000	00000	00
Motivations			

Need to better understand preimplantation development

Research on human embryos is **limited** (experiments, law, ethics)

In silico predictive model of human embryonic development

Introduction	Method	Results	Conclusion
0000	000000	00000	00

Human embryonic development

Introduction	Method	Results	Conclusion
00●00	0000000	00000	

Background [Meistermann, et al., Cell Stem Cell, 2021]

scRNAseq data from multiple stage embryos

Expression of \sim 20,000 genes in \sim 1,700 cells from 128 multi-stage embryos

Previous results (in house)

- Clustering of cells
- Identification of gene modules \rightarrow 438 transcription factors (TFs)
- Pseudotime evolution of cells at different developmental stages

Introduction	Method	Results	Conclusion
000●0	0000000	00000	00

State of the art – modeling of single-cell data

Data analysis

- Statistical, e.g. weighted correlation network analysis (WGCNA [Langfelder & Horvath, BMC Bioinformatics, 2008])
- Machine learning, *e.g.* reverse graph embedding (pseudotime [Qiu *et al.*, *Nature Methods*, 2017]), uniform manifold approximation and projection (UMAP [McInnes *et al.*, *arXiv* preprint, 2018])

Network inference

• Correlation, *e.g.* gene regulatory network (GRN) inference (SCENIC [Aibar *et al.*, *Nat Methods*, 2017])

Modeling

- Dynamic Boolean models requires average of gene expression and prior knowledge (BoNesis [Chevalier *et al.*, *ICTAI*, 2019])
- Mouse embryo development computational models requires genetic perturbations and knockdowns [Dunn et al., EMBO journal, 2019]

Introduction	Method	Results	Conclusion
00000	000000	00000	00

Goal: Boolean models of embryonic developmental stages

Challenges

- Single cell data specifities: sparsity and redundancy
- High dimensional data: \sim 20,000 genes for \sim 1,700 cells
- Unavailable perturbations

Introduction	Method	Results	Conclusion
00000	000000	00000	00

Goal: Boolean models of embryonic developmental stages

Challenges

- Single cell data specifities: sparsity and redundancy
- High dimensional data: $\sim 20,000$ genes for $\sim 1,700$ cells
- Unavailable perturbations

Proposed solution

- Distinguish between two developmental stages
- Build families of network models for each stage
- Identify **regulatory mechanisms** that differentiate both models and representing multiple cells
- Application on medium (M^{TE}) and late (L^{TE}) trophectoderm stages

Introduction	Method	Results	Conclusion
	•000000		

Pipeline

Introduction	Method	Results	Conclusion
00000	000000	00000	00

Learning predictive models

- Signed and directed causal interactions among genes
- Gene expression for a developmental stage

Introduction	Method	Results	Conclusion
	000000		

Step 1. PKN reconstruction

Query on PathwayCommons database, via (in house) pyBRAvo tool [Lefebvre *et al.*, *Database*, 2021]

Output PKN

- Labeled (activation/inhibition) and oriented graph
- Nodes: genes (inputs + intermediates + readouts), protein-complexes
- Edges: Transcription regulation

 \rightarrow input and intermediate genes: entry for experimental design (Step 2)

 \rightarrow readout genes: output for experimental design (Step 2)

Introduction	Method	Results	Conclusion
	000000		

Step 2. Experimental design reconstruction

ldea

Extract pseudo-perturbation experiments from scRNAseq data given the PKN structure (Step 1)

Data preprocessing

- Binarization of input + intermediate genes. Basic approach: gene is expressed (1) if at least 2 reads are present; else it is absent (0).
- Normalization of readout genes.

Introduction	Method	Results	Conclusion
	0000000		

Step 2.Pseudo-perturbation generation

- 3 selected genes: A, C, D (k = 3)
- Matching cells: (1,5), (2,4) ← pseudo-perturbations
- Different guaranteed pseudo-perturbation vector
- Optimal number of matching cells: 2

Introduction	Method	Results	Conclusion
	0000000		

Step 2. Maximizing the readout difference

Redundancy

Introduction	Method	Results	Conclusion
	0000000		

Step 2. Maximizing the readout difference

Redundancy

Mathieu Bolteau (LS2N)

Familiy of Boolean Networks for Class A

Mathieu Bolteau (LS2N)

BNs as a framework

Networks for Class B

Introduction	Method	Results	Conclusion
00000	000000	●0000	

Reconstructed PKN

- From 438 TFs
- 233 nodes : inputs (85), intermediates (36), readouts (19)
- 369 edges

Introduction	Method	Results	Conclusion
		0000	

Pseudo-perturbations search

Inputs

- $#M^{TE}$ cells = 348
- $#L^{TE}$ cells = 332
- k = 10: 10 genes selected from 121 input and intermediate genes
- Complexity: 8.01 × 10³⁴⁷⁹³

7h 7 davs 20 days 96 92 90 #solutions=2 **78** ⁸⁰ 70 ⁷⁰ 43 ⁵⁰ 43 ⁴⁰ #solutions=7 #solutions=235 #solutions=2,179,441 30 #solutions=1.716.211 1020 1.00 0.00 0.25 0.50 0.75 1.25 1.50 1.75 Execution time (sec) 1e6

Convergence of the number of pseudo-pertubations over time.

Introduction	Method	Results	Conclusion
		0000	

Pseudo-perturbations search

Inputs

- $#M^{TE}$ cells = 348
- $#L^{TE}$ cells = 332
- k = 10: 10 genes selected from 121 input and intermediate genes
- Complexity: 8.01 × 10³⁴⁷⁹³

7h 7 days 20 days 96 90 #solutions=2 #solutions=7 #solutions=235 #solutions=2,179.441 30 #solutions=1.716.211 1020 0.50 0.00 0.25 0.75 1.00 1.25 1.50 1.75 1e6 Execution time (sec)

Convergence of the number of pseudo-pertubations over time.

Introduction	Method	Results	Conclusion
00000	000000	00000	

96 pseudo-perturbations sub-optimal solution

- Number of solution = 2
- Different genes in solutions = 11

11 characteristic genes to have the same Boolean behavior in M^{TE} and L^{TE}

Mathieu Bolteau (LS2N)

BNs as a framework

Introduction	Method	Results	Conclusion
00000	000000	000●0	00
A 11	/		

Cell representativity (redundancies)

Solution	M ^{TE} (%)	L ^{TE} (%)	Total (%)
1	266 (76%)	246 (74%)	512 (75%)
2	235 (68%)	248 (75%)	483 (71%)

- $#M^{TE} cells = 348$
- $#L^{TE} cells = 332$
- #*Total* cells = 680

• 96 pseudo-perturbations

On average, 73% of representativity for the total number of cell at each stage.

Introduction	Method	Results	Conclusion
00000	0000000	00000	

Inferred BNs families for solution 1

• Greater BNs variability for $L^{TE} \rightarrow$ Gain of function

• L^{TE} seems more unstable (number of BNs) \rightarrow transition from L^{TE} to another stage

Introduction	Method	Results	Conclusion
			0

Conclusion

Pseudo-perturbation generation

- Efficient algorithm to select cells and genes to generate pseudo-perturbations \rightarrow 92 pseudo-perturbations in 7h
- Robustness of the generated solutions \rightarrow from +2 millions of solutions to only 2
- Discovery of 11 genes whose on/off values remain identical for 96 cells across 2 classes
- Expression of 11 genes across 96 cells are representative of the cell populations (e.g. 72% in M^{TE} and 73% in L^{TE})
- Our method deals with single cell data and its specificities (redundancy and sparsity)

General method

- A method that learns Boolean networks of 2 stages using scRNAseq data and PKN
- Mechanisms of TF-gene regulations distinguishing 2 developmental stages
- Overall approach achieves a good computational time (\sim 1 day)
- Complementarity with the state of the art
 - Boolean models without using perturbations
 - Method taking into account the diverse states of cell population

Introduction	Method	Results	Conclusion
00000	000000	00000	○●

Aknowledgements

- Jérémie Bourdon @LS2N, Nantes University
- Carito Guziolowski @LS2N, Centrale Nantes
- Laurent David @CR2TI, Nantes University Hospital, Nantes University
- ANR AIBY4 & ANR BOOSTIVF

