Inferring Boolean Networks from Single-Cell Human Embryo Datasets

Mathieu Bolteau1Jérémie Bourdon1Laurent David2Carito Guziolowski1

¹Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000 Nantes, France

²Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France

ISBRA 2023

Wednesday, October 11th 2023

Introduction	Pipeline	PKN reconstruction	Experimental design reconstruction	BNs inference	Conclusion
●000	00	0		0	00
Motivat	ions				

Need to better understand preimplantation development

Introduction	Pipeline	PKN reconstruction	Experimental design reconstruction	BNs inference	Conclusion
●000	00	0		0	00
Motivat	ions				

Need to better understand preimplantation development

Research on human embryos is **limited** (experiments, law, ethics)

In silico predictive model of human embryonic development

Introduction	Pipeline	PKN reconstruction	Experimental design reconstruction	BNs inference	Conclusion
0000					

Human embryonic development

Introduction	Pipeline	PKN reconstruction	Experimental design reconstruction	BNs inference	Conclusion
0000					

Background [Meistermann, et al., Cell Stem Cell, 2021]

scRNAseq data from multiple stage embryos

Expression of \sim 20,000 genes in \sim 1,700 cells from 128 multi-stage embryos

Previous results (in house)

- Clustering of cells
- Identification of gene modules \rightarrow 438 transcription factors (TFs)
- Pseudotime evolution of cells at different developmental stages

Introduction	Pipeline	PKN reconstruction	Experimental design reconstruction	BNs inference	Conclusion
0000					

Goal: Boolean models of embryonic developmental stages

Challenges

- Single cell data specifities: sparsity and redundancy
- High dimensional data: \sim 20,000 genes for \sim 1,700 cells
- Unavailable perturbations

Introduction	Pipeline	PKN reconstruction	Experimental design reconstruction	BNs inference	Conclusion
0000					

Goal: Boolean models of embryonic developmental stages

Challenges

- Single cell data specifities: sparsity and redundancy
- High dimensional data: $\sim 20,000$ genes for $\sim 1,700$ cells
- Unavailable perturbations

Proposed solution

- Distinguish between two developmental stages
- Build families of network models for each stage
- Identify **regulatory mechanisms** that differentiate both models and representing multiple cells
- Application on medium (M^{TE}) and late (L^{TE}) trophectoderm stages

Introduction	Pipeline	PKN reconstruction	Experimental design reconstruction	BNs inference	Conclusion
0000	•o	0	000	0	00

Introduction	Pipeline	PKN reconstruction	Experimental design reconstruction	BNs inference	Conclusion
	00				

Learning predictive models

- Signed and directed causal interactions among genes
- Gene expression for a developmental stage

Introduction Pipeline	PKN reconstruction	Experimental design reconstruction	BNs inference	Conclusion
0000 00	•	000	0	00

- From 438 TFs
- 233 nodes : inputs (85), intermediates (36), readouts (19)
- 369 edges

Introduction	Pipeline	PKN reconstruction	Experimental design reconstruction	BNs inference	Conclusion
			000		

Method

ldea

Extract pseudo-perturbation experiments from scRNAseq data given the PKN structure (Step 1)

Data preprocessing

- Binarization of input + intermediate genes. Basic approach: gene is expressed (1) if at least 2 reads are present; else it is absent (0).
- Normalization of readout genes.

Introduction Pipeline	PKN reconstruction	Experimental design reconstruction	BNs inference	Conclusion
		000		

Pseudo-perturbation generation

- 3 selected genes: A, C, D (k = 3)
- Matching cells: (1,5), (2,4) \leftarrow pseudo-perturbations
- Different guaranteed pseudo-perturbation vectors
- Optimal number of matching cells: 2

Introduction	Pipeline	PKN reconstruction	Experimental design reconstruction	BNs inference	Conclusion
0000	00		000		00

Reconstructed exprimental design

Inferred BN families using Caspo [Guziolowski et al., Bioinformatics, 2013]

- Greater BNs variability for $L^{TE} \rightarrow$ Gain of function
- L^{TE} seems more unstable (number of BNs) \rightarrow transition from L^{TE} to another stage

Mathieu Bolteau (LS2N)

Introduction	Pipeline	PKN reconstruction	Experimental design reconstruction	BNs inference	Conclusion
					00

Conclusion

Pseudo-perturbation generation

- Algorithm to select cells and genes to generate pseudo-perturbations \rightarrow 20 pseudo-perturbations in 65h
- Expression of 10 genes across 20 cells are representative of the cell populations (e.g. 75% in M^{TE} and 89% in L^{TE})
- Our method deals with single cell data and its specificities (redundancy and sparsity)

General method

- A method that learns Boolean networks of 2 stages using scRNAseq data and PKN
- Mechanisms of TF-gene regulations distinguishing 2 developmental stages
- Complementarity with the state of the art
 - Boolean models without using perturbations
 - Method taking into account the diverse states of cell population

Introduction	Pipeline	PKN reconstruction	Experimental design reconstruction	BNs inference	Conclusion
					00

Aknowledgements

- Jérémie Bourdon @LS2N, Nantes University
- Carito Guziolowski @LS2N, Centrale Nantes
- Laurent David @CR2TI, Nantes University Hospital, Nantes University
- ANR AIBY4 & ANR BOOSTIVF

CENTRALF