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Introduction Method Results Conclusion & Perspectives

Motivations

Need to better understand preimplantation development
(especially cell fate transition)

Research on human embryos is limited (experiments, law, ethics)

↓
In silico predictive model of the cell fate transition

during the human preimplantation development
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Human embryonic development
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Background [Meistermann, et al. Cell Stem Cell, 2021]

scRNAseq data from multiple stage embryos
Expression of ∼ 20, 000 genes in ∼ 1, 700 cells from 128 multi-stage embryos

Principal results
• Clustering of cells

• Identification of gene modules → 438 transcription factors (TFs)

• Pseudotime evolution of cells at different developmental stages
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State of the art1 – modeling of single data

Data analysis
• Statistical, e.g. weighted correlation network analysis (WGCNA [Langfelder & Horvath,

BMC Bioinformatics, 2008])

• Machine learning, e.g. reverse graph embedding (pseudotime [Qiu et al., Nature Methods,

2017]), uniform manifold approximation and projection (UMAP [McInnes et al., arXiv

preprint, 2018])

Network inference
• Correlation, e.g. gene regulatory network (GRN) inference (SCENIC [Aibar et al., Nat

Methods, 2017])

Modeling
• Dynamic Boolean models via BoNesis requires average of gene expression and prior

knowledge [Chevalier et al., ICTAI, 2019]

• Mouse embryo development computational models requires genetic perturbations
and knockdowns [Dunn et al., EMBO journal, 2019]

1
Not exhaustive
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Goal: Boolean models of embryonic developmental stages

Challenges

• Single cell data specifity: sparsity and redundancy

• High dimensional data: ∼ 20, 000 genes for ∼ 1, 700 cells

• Unavailable perturbations

Proposed solution

• Distinguish between two developmental stages

• Build specific network models for each stage

• Identify regulatory mechanisms that differentiate both models

• Application on TE maturation: medium (MTE ) and late (LTE ) TE
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Pipeline

Gene list

PKN Construction

Gene expression
data

Pseudo-perturbation
generation

Pseudo-
perturbations

BNs inference

Families of
Boolean Networks

Readouts difference
maximization

Experimental
designs

PKN

PKN reconstruction Experimental design reconstruction

BNs inference
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Learning predictive models

• Signed and directed causal interactions among genes

• Gene expression for a developmental stage
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Step 1. PKN reconstruction
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Step 1. PKN reconstruction

Query on PathwayCommons database, via
pyBRAvo [Lefebvre et al. Database, 2021]

Output PKN
• Labeled (activation/inhibition) and oriented graph

• Nodes: genes (inputs + intermediates + readouts),
protein-complexes

• Edges: Transcription regulation

→ inputs & intermediates genes: input for experimental
design (Step 2)
→ readouts genes: output for experimental design (Step 2)

pyBRAvo
tool

PathwayCommons

ZSCAN4 LEF1

OTX2 ZEB1

DNMT1 DUXA

ARGFX HEY1

KLF17 KLF11

IGF1R SNAI1

POU5F1B SOX2

Genes list

PKN
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Step 2. Experimental design reconstruction

Idea

Extract pseudo-perturbation experiments from scRNAseq data given the
PKN structure (Step 1)

Data preprocessing

• Binarization of input + intermediate genes (5 genes). Basic approach:
gene is expressed (1) if at least 2 reads are present; else it is absent
(0).

• Normalization of readout genes
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Step 2.Pseudo-perturbation generation

• 3 selected genes: A, C, D (k = 3)

• Matching cells (1,5), (2,4) ← pseudo-perturbations

• Optimal number of matching cells: 2
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Step 2. Pseudo-perturbations generation algorithm

Main rules (x4)

• k-genes: Select k genes among all possible combinations of input +
intermediate genes.

• Reachability: input → intermediate.

• Matching cells: Select pairs of cells (c1, c2), c1 ∈ A, c2 ∈ B, for which
the (binarized) expression matches for each of the k-genes.

• Filter redundancy: The set of k (binarized) expressions should differ
for all matching cells of the same class.

Optimizations (x2)

• Maximize the number of matching cells of either A or B class.

• Maximize the difference of expression of the readout genes of the
matching cells across all redundant pairs.
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Step 2. Maximizing the readouts difference

Redundancy

Readout difference maximization
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Step 3. BNs inference using Caspo [Guziolowski et al. Bioinformatics, 2013.]
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Reconstructed PKN

• 233 nodes : inputs (85), intermediates (36), readouts (19)

• 369 edges
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Pseudo-perturbations search

Inputs
• #MTE cells = 348

• #LTE cells = 332

• k = 10: 10 genes selected from 121 input and intermediate genes

• Search space:
(121

10

)
= 1.27x1014 possible choices
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Robustness of solutions

• The more pseudo-perturbations we have, the fewer different genes we have in the solutions

• Gene number explosion when few pseudo-perturbations

1 7 days of run on a computer cluster comprising 160 CPUs and 1.5 To of RAM
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96 pseudo-perturbations sub-optimal solution

• Number of solution = 2

• Different genes in solutions = 11

11 characteristic genes
to have the same Boolean behavior in MTE and LTE
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Cell representativity (redundancies)

Solution MTE (%) LTE (%) Total (%)

1 266 (76%) 246 (74%) 512 (75%)
2 235 (68%) 248 (75%) 483 (71%)

• #MTEcells = 348

• #LTEcells = 332

• #Total cells = 680

On average, 73% of representativity for the total number of cell
at each stage.
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Learning Boolean logic models

Meaning of “Optimal”

• Biological Property: consistency with experimental data

• Parsimony Principle: the minimal/simplest explanation
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Caspo metrics for inferred BNs

Solution MSE Size #Networks

MTE LTE MTE LTE MTE LTE

1 0.1159 0.1410 6 20 5 17797
2 0.1180 0.1400 1 5 1 1

• Lower MSE for MTE → MTE model is simpler

• More redundancies for LTE (number of BNs) → different ways to explain the
“input-output” relation with Boolean gates
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Inferred BNs for solution 1
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• More readouts implicated in LTE stage

• Greater BNs variability for LTE → Gain of function

• LTE seems more unstable → transition from LTE to another stage
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Conclusion

Pseudo-perturbation generation

• Efficient algorithm to select cells and genes to generate pseudo-perturbations
→ 96 pseudo-perturbations in 7 days

• Robustness of the generated solutions → from +2 millions of solutions to only 2
• Discovery of 11 genes whose on/off values remain identical for 96 cells across 2

classes
• Expression of 11 genes across 96 cells are representative of the cell populations

(e.g. 72% in MTE and 73% in LTE )
• Our method deals with single cell data and its specificities (redundancy and sparsity)

General method

• Proposed a method that learns Boolean networks of 2 stages using scRNAseq data
and Prior Knowledge

• Mechanisms of TF-gene regulations distinguishing 2 developmental stages

• Complementarity with the state of the art

• Boolean models without using perturbations
• Method taking into account the diverse states of cell population
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Perspectives

• Comparing different Prior knowledge (in progress)

• Study the impact of different discretization methods

• Evaluate the difference between the found BNs

• Apply the method on other developmental stages (different cell fate)
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