Boolean networks as a framework to model human preimplantation development

Mathieu Bolteau

Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000 Nantes, France

GT Bioss workshop: networks and biological models inference

Monday, July 3rd 2023

Introduction	Method	Results	Conclusion & Perspectives
●0000	00000000	0000000	
Motivations			

Need to **better understand preimplantation development** (especially cell fate transition)

Introduction	Method	Results	Conclusion & Perspectives
•0000	00000000	0000000	

Need to better understand preimplantation development (especially cell fate transition)

Research on human embryos is limited (experiments, law, ethics)

In silico predictive model of the cell fate transition during the human preimplantation development

Motivations

Introduction	Method	Results	Conclusion & Perspectives
0000			

Human embryonic development

Introduction	Method	Results	Conclusion & Perspectives
00000			

Background [Meistermann, et al. Cell Stem Cell, 2021]

scRNAseq data from multiple stage embryos

Expression of \sim 20,000 genes in \sim 1,700 cells from 128 multi-stage embryos

Principal results

- Clustering of cells
- Identification of gene modules \rightarrow 438 transcription factors (TFs)
- Pseudotime evolution of cells at different developmental stages

State of the art^1 – modeling of single data

Data analysis

- Statistical, *e.g.* weighted correlation network analysis (WGCNA [Langfelder & Horvath, *BMC Bioinformatics*, 2008])
- Machine learning, *e.g.* reverse graph embedding (pseudotime [Qiu *et al.*, *Nature Methods*, 2017]), uniform manifold approximation and projection (UMAP [McInnes *et al.*, *arXiv* preprint, 2018])

Network inference

• Correlation, *e.g.* gene regulatory network (GRN) inference (SCENIC [Aibar *et al.*, *Nat Methods*, 2017])

Modeling

- Dynamic Boolean models via BoNesis requires average of gene expression and prior knowledge [Chevalier *et al.*, *ICTAI*, 2019]
- Mouse embryo development computational models requires genetic perturbations and knockdowns [Dunn et al., EMBO journal, 2019]

¹Not exhaustive

Introduction	Method	Results	Conclusion & Perspectives
00000	00000000	0000000	000

Goal: Boolean models of embryonic developmental stages

Challenges

- Single cell data specifity: sparsity and redundancy
- High dimensional data: \sim 20,000 genes for \sim 1,700 cells
- Unavailable perturbations

Goal: Boolean models of embryonic developmental stages

Challenges

- Single cell data specifity: sparsity and redundancy
- High dimensional data: \sim 20,000 genes for \sim 1,700 cells
- Unavailable perturbations

Proposed solution

- Distinguish between two developmental stages
- Build specific network models for each stage
- Identify regulatory mechanisms that differentiate both models
- Application on TE maturation: medium (M^{TE}) and late (L^{TE}) TE

Introduction	Method	Results	Conclusion & Perspectives
00000	●0000000	0000000	

Pipeline

Mathieu Bolteau (LS2N)

Introduction	Method	Results	Conclusion & Perspectives
00000	00000000	00000000	000

Learning predictive models

- Signed and directed causal interactions among genes
- Gene expression for a developmental stage

Introduction	Method	Results	Conclusion & Perspectives
	0000000		

Step 1. PKN reconstruction

Method 000000000

Results 00000000 Conclusion & Perspectives

Step 1. PKN reconstruction

Query on PathwayCommons database, via pyBRAvo [Lefebvre et al. Database, 2021]

Output PKN

- Labeled (activation/inhibition) and oriented graph
- Nodes: genes (inputs + intermediates + readouts), protein-complexes
- Edges: Transcription regulation

 \rightarrow inputs & intermediates genes: input for experimental design (Step 2)

 \rightarrow readouts genes: output for experimental design (Step 2)

Introduction	Method	Results	Conclusion & Perspectives
	00000000		

Step 2. Experimental design reconstruction

Idea

Extract pseudo-perturbation experiments from scRNAseq data given the PKN structure (Step 1)

Data preprocessing

- Binarization of input + intermediate genes (5 genes). Basic approach: gene is expressed (1) if at least 2 reads are present; else it is absent (0).
- Normalization of readout genes

Introduction	Method	Results	Conclusion & Perspectives
	000000000		

Step 2.Pseudo-perturbation generation

- 3 selected genes: A, C, D (k = 3)
- Matching cells (1,5), (2,4) ← pseudo-perturbations
- Optimal number of matching cells: 2

Introduction	Method	Results	Conclusion & Perspectives
00000	000000000	0000000	000

Step 2. Pseudo-perturbations generation algorithm

Main rules (x4)

- k-genes: Select k genes among all possible combinations of input + intermediate genes.
- Reachability: input \rightarrow intermediate.
- Matching cells: Select pairs of cells (c₁, c₂), c₁ ∈ A, c₂ ∈ B, for which the (binarized) expression matches for each of the k-genes.
- Filter redundancy: The set of k (binarized) expressions should differ for all *matching cells* of the same class.

Optimizations (x2)

- Maximize the number of *matching cells* of either A or B class.
- Maximize the difference of expression of the readout genes of the *matching cells* across all redundant pairs.

Introduction	Method	Results	Conclusion & Perspectives
	000000000		

Step 2. Maximizing the readouts difference

Redundancy

Introduction	Method	Results	Conclusion & Perspectives
	000000000		

Step 2. Maximizing the readouts difference

Redundancy

Mathieu Bolteau (LS2N)

Introduction	Method	Results	Conclusion & Perspectives
00000	00000000	•0000000	

Reconstructed PKN

- 233 nodes : inputs (85), intermediates (36), readouts (19)
- 369 edges

Introduction	Method	Results	Conclusion & Perspectives
		0000000	

Pseudo-perturbations search

Inputs

- $#M^{TE}$ cells = 348
- $#L^{TE}$ cells = 332
- k = 10: 10 genes selected from 121 input and intermediate genes
- Search space: $\binom{121}{10} = 1.27 \times 10^{14}$ possible choices

7h 7 days 20 days 30 1.00 0.00 0.25 0.50 0.75 1.25 1.50 1.75 Execution time (sec) 1e6

Convergence of the number of pseudo-pertubations over time.

Introduction	Method	Results	Conclusion & Perspectives
		0000000	

Pseudo-perturbations search

Inputs

- $#M^{TE}$ cells = 348
- $#L^{TE}$ cells = 332
- k = 10: 10 genes selected from 121 input and intermediate genes
- Search space: $\binom{121}{10} = 1.27 \times 10^{14}$ possible choices

Mathieu Bolteau (LS2N)

Introduction	Method	Results	Conclusion & Perspectives
		0000000	

Robustness of solutions

- The more pseudo-perturbations we have, the fewer different genes we have in the solutions
- Gene number explosion when few pseudo-perturbations

 $^{^1}$ 7 days of run on a computer cluster comprising 160 CPUs and 1.5 To of RAM

Introduction	Method	Results	Conclusion & Perspectives
00000	00000000	0000000	000

Robustness of solutions

- The more pseudo-perturbations we have, the fewer different genes we have in the solutions
- Gene number explosion when few pseudo-perturbations

 1 7 days of run on a computer cluster comprising 160 CPUs and 1.5 To of RAM

Mathieu Bolteau (LS2N)

Introduction	Method	Results	Conclusion & Perspectives
00000	00000000	0000000	000

96 pseudo-perturbations sub-optimal solution

- Number of solution = 2
- Different genes in solutions = 11

11 characteristic genes to have the same Boolean behavior in M^{TE} and L^{TE}

Introduction	Method	Results	Conclusion & Perspectives
00000	00000000	0000000	000

Cell representativity (redundancies)

Solution	M ^{TE} (%)	L ^{TE} (%)	Total (%)
1	266 (76%)	246 (74%)	512 (75%)
2	235 (68%)	248 (75%)	483 (71%)

- $#M^{TE} cells = 348$
- $#L^{TE} cells = 332$
- #*Total* cells = 680

On average, 73% of representativity for the total number of cell at each stage.

Introduction	Method	Results	Conclusion & Perspectives
00000	00000000	00000000	000

Learning Boolean logic models

Meaning of "Optimal"

- Biological Property: consistency with experimental data
- **Parsimony Principle**: the minimal/simplest explanation

Introduction	Method	Results	Conclusion & Perspectives
00000	00000000	00000000	000

Caspo metrics for inferred BNs

Solution	MSE		Siz	ze	#Ne	tworks
	M ^{TE}	L^{TE}	M [™]	L^{TE}	MTE	L^{TE}
1	0.1159	0.1410	6	20	5	17797
2	0.1180	0.1400	1	5	1	1

- Lower MSE for $M^{TE} \rightarrow M^{TE}$ model is simpler
- More redundancies for L^{TE} (number of BNs) \rightarrow different ways to explain the "input-output" relation with Boolean gates

Introduction	Method	Results	Conclusion & Perspectives
		0000000	

Inferred BNs for solution 1

- More readouts implicated in L^{TE} stage
- Greater BNs variability for $L^{TE} \rightarrow$ Gain of function
- L^{TE} seems more unstable \rightarrow transition from L^{TE} to another stage

Introduction	Method	Results	Conclusion & Perspectives
00000	00000000	0000000	•00

Conclusion

Pseudo-perturbation generation

- Efficient algorithm to select cells and genes to generate pseudo-perturbations \rightarrow 96 pseudo-perturbations in 7 days
- Robustness of the generated solutions \rightarrow from +2 millions of solutions to only 2
- Discovery of 11 genes whose on/off values remain identical for 96 cells across 2 classes
- Expression of 11 genes across 96 cells are representative of the cell populations (e.g. 72% in M^{TE} and 73% in L^{TE})
- Our method deals with single cell data and its specificities (redundancy and sparsity)

General method

- Proposed a method that learns Boolean networks of 2 stages using scRNAseq data and Prior Knowledge
- Mechanisms of TF-gene regulations distinguishing 2 developmental stages
- Complementarity with the state of the art
 - Boolean models without using perturbations
 - Method taking into account the diverse states of cell population

Introduction	Method	Results	Conclusion & Perspectives
			000

Perspectives

- Comparing different Prior knowledge (in progress)
- Study the impact of different discretization methods
- Evaluate the difference between the found BNs
- Apply the method on other developmental stages (different cell fate)

Introduction	Method	Results	Conclusion & Perspectives
00000	00000000	0000000	○○●

Aknowledgements

- Jérémie Bourdon @LS2N, Nantes University
- Carito Guziolowski @LS2N, Centrale Nantes
- Laurent David @CR2TI, CHU de Nantes, Nantes University
- ANR AIBY4 & ANR BOOSTIVF

