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Motivations

Need to better understand preimplantation development
(especially cell fate transition)
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Introduction
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Motivations

Need to better understand preimplantation development
(especially cell fate transition)

Research on human embryos is limited (experiments, law, ethics)

!

In silico predictive model of the cell fate transition
during the human preimplantation development
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Human embryonic development
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BaCkg rou nd [Meistermann, et al. Cell Stem Cell, 2021]

scRNAseq data from multiple stage embryos

Expression of ~ 20,000 genes in ~ 1,700 cells from 128 multi-stage embryos

Principal results

® Clustering of cells
® |dentification of gene modules — 438 transcription factors (TFs)

® Pseudotime evolution of cells at different developmental stages
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State of the art! — modeling of single data

Data analysis

® Statistical, e.g. weighted correlation network analysis (WGCNA [Langfelder & Horvath,
BMC Bioinformatics, 2008])

® Machine learning, e.g. reverse graph embedding (pseudotime [Qiu et al., Nature Methods,
2017]), uniform manifold approximation and projection (UMAP [Mclnnes et a., arxiv
preprint, 2018])
Network inference
® Correlation, e.g. gene regulatory network (GRN) inference (SCENIC [Aibar et al., Nat
Methods, 2017])
Modeling

® Dynamic Boolean models via BoNesis requires average of gene expression and prior
knowledge [Chevalier et al., ICTAI 2019]

® Mouse embryo development computational models requires genetic perturbations
and knockdowns [Dunn et al., EMBO journal, 2019

1
Not exhaustive
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Goal: Boolean models of embryonic developmental stages

Challenges
® Single cell data specifity: sparsity and redundancy
® High dimensional data: ~ 20,000 genes for ~ 1,700 cells

® Unavailable perturbations
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Goal: Boolean models of embryonic developmental stages

Challenges

® Single cell data specifity: sparsity and redundancy
® High dimensional data: ~ 20,000 genes for ~ 1,700 cells

® Unavailable perturbations

Proposed solution

® Distinguish between two developmental stages

® Build specific network models for each stage

® |dentify regulatory mechanisms that differentiate both models

® Application on TE maturation: medium (M'F) and late (L"F) TE

TE
1
early TE late TE
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Pipeline
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Learning predictive models

Inputs Outputs

a b c ,—E ,_H
Input Readout
genes ,
[

+ genes

Readout
pseudo-perturbations readouts genes
Prior-Knowledge Experimental design Predictive model

Network

® Signed and directed causal interactions among genes

® Gene expression for a developmental stage

/ D
/26
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Step 1. PKN reconstruction

ARG2
BCL3
CDx1
EGR1
GATA3
NANOG

Y

PKN construction |- -- {pyBRAvo
tool

h 4

PKN reduction

Reduced PKN
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Step 1. PKN reconstruction

Query on PathwayCommons database, via b o
pyB RAvo [Lefebvre et al. Database, 2021] e ones
Genes list
OUtPUt PKN @ PathwayCommons
® Labeled (activation/inhibition) and oriented graph /
fyBRAVO
® Nodes: genes ( + intermediates + readouts), ool

protein-complexes

® Edges: Transcription regulation

' »
— & intermediates genes: input for experimental SQL

design (Step 2)

— readouts genes: output for experimental design (Step 2)
PKN
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Step 2. Experimental design reconstruction

Extract pseudo-perturbation experiments from scRNAseq data given the
PKN structure (Step 1)

Data preprocessing

® Binarization of + intermediate genes (5 genes). Basic approach:
gene is expressed (1) if at least 2 reads are present; else it is absent

0).

® Normalization of readout genes
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Step 2.Pseudo-perturbation generation

A
AL

Inputs + |ntermed|ates Readouts

- N

1 1 1 0 08 04 06 A

2 1 0 1 0 0 02 05 03 A

3! 1 1 0 1 1 08 03 09 A

4 1 1 1 0 1 06 01 02 B

5 1 0 0 1 1 07 08 05 B

6 0 0 1 0 1 07 02 03 B

, Loglc program

1 1 0 1 08 04 06 A 5 1 0 1 07 08 05 B
2 1 1 0 02 05 03 A 4 1 1 0 06 01 02 B

® 3 selected genes: A, C, D (k = 3)
® Matching cells (1,5), (2,4) < pseudo-perturbations

® Optimal number of matching cells: 2
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Step 2. Pseudo-perturbations generation algorithm

Main rules (x4)

® k-genes: Select k genes among all possible combinations of +
intermediate genes.

® Reachability: — intermediate.

® Matching cells: Select pairs of cells (c1, ), a1 € A, & € B, for which
the (binarized) expression matches for each of the k-genes.

® Filter redundancy: The set of k (binarized) expressions should differ
for all matching cells of the same class.

Optimizations (x2)
® Maximize the number of matching cells of either A or B class.

® Maximize the difference of expression of the readout genes of the
matching cells across all redundant pairs.
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Step 2. Maximizing the readouts difference

1 @—__ ! N. of matching cells : 2 (max)
, ,,f"""::-i‘h“jfb 5 Solution 1: (1,5), (2,4)
o Solution 2 : (3,5), (2,4)

Redundancy measure :
Class A : 3 out of 3
Class B : 2 outof 3
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Step 2. Maximizing the readouts difference

1 @—__ e 4 N. of matching cells : 2 (max)
, ,,f"""::-iﬁ"“j*:>~ 5 Solution 1: (1,5), (2,4)
o Solution 2 : (3,5), (2,4)

Redundancy measure :

— e T
Class A Class B Class B : 2 out of 3

1 0 1 08 04 06 A

5 1 0 1 07 08 05 B

1 0 1 08 03 09 A
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Step 3 BNS Inference USIng CaSpO [Guziolowski et al. Bioinformatics, 2013.]

3 1 0 1 08 03 09 A 4 1 1 0 06 01 02 B
2 1 1 0 02 05 03 A 5 1 0 1 07 08 05 B
Experimental design for Class A

Experimental design for Class B

+ oo+
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PKN

Learning Boolean

® f Networks (Caspo)
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Boolean Networks
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Boolean Networks
for Class B
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Reconstructed PKN

® 233 nodes : , intermediates (36), readouts (19)
® 369 edges

Ikt i HL%—
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Pseudo-perturbations search
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o 4MTE cells = 348
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® k =10: 10 genes selected from 121 and intermediate genes
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Pseudo-perturbations search

Inputs
o 4MTE cells = 348
o 4|TE cells =332
® k =10: 10 genes selected from 121 and intermediate genes

® Search space: (11201) = 1.27x10 possible choices
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Robustness of solutions
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pseudo-perturbations

® The more pseudo-perturbations we have, the fewer different genes we have in the solutions

® Gene number explosion when few pseudo-perturbations

17 days of run on a computer cluster comprising 160 CPUs and 1.5 To of RAM
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® The more pseudo-perturbations we have, the fewer different genes we have in the solutions

® Gene number explosion when few pseudo-perturbations

17 days of run on a computer cluster comprising 160 CPUs and 1.5 To of RAM
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96 pseudo-perturbations sub-optimal solution

® Number of solution = 2

® Different genes in solutions = 11

100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

% of presence in answer sets

JUN FOS TCF4 SMARCE1 C21lorf33 SKI ELK1 STK11 NFATC2 PCBP4 EGR1
Gene
11 characteristic genes
to have the same Boolean behavior in MTE and LTE
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Cell representativity (redundancies)

Solution | MTE (%) | L™E (%) | Total (%)

1 266 (76%) | 246 (74%) | 512 (75%)
2 235 (68%) | 248 (75%) | 483 (71%)

o 4 MTEcells = 348
o 4] Ecells = 332
® #Total cells = 680

On average, 73% of representativity for the total number of cell
at each stage.
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Learning Boolean logic models

Inputs Outputs

Readout
genes

pseudo-perturbations readouts
f

Prior-Knowledge

Network Experimental design Optimal Boolean

logic model

Meaning of “Optimal”

® Biological Property: consistency with experimental data

® Parsimony Principle: the minimal/simplest explanation
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Caspo metrics for inferred BNs

Solution MSE Size #Networks
MTE L TE MTE LTE M TE L TE
1 0.1159 0.1410 6 20 5 17797
2 0.1180 0.1400 1 5 1 1

® Lower MSE for M™ — M™E model is simpler

® More redundancies for L™ (number of BNs) — different ways to explain the
“input-output” relation with Boolean gates
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Inferred BNs for solution 1

Medium TE stage BNs - . N ~ B Late TE stage BNs

LTE

® More readouts implicated in stage

® Greater BNs variability for LTE — Gain of function

® | TE seems more unstable — transition from L”F to another stage
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Conclusion

Pseudo-perturbation generation

® Efficient algorithm to select cells and genes to generate pseudo-perturbations
— 96 pseudo-perturbations in 7 days
Robustness of the generated solutions — from +2 millions of solutions to only 2
Discovery of 11 genes whose on/off values remain identical for 96 cells across 2
classes

® Expression of 11 genes across 96 cells are representative of the cell populations

(e.g. 72% in M'E and 73% in LTF)
® Qur method deals with single cell data and its specificities (redundancy and sparsity)

General method

® Proposed a method that learns Boolean networks of 2 stages using scRNAseq data
and Prior Knowledge

® Mechanisms of TF-gene regulations distinguishing 2 developmental stages

® Complementarity with the state of the art

® Boolean models without using perturbations
® Method taking into account the diverse states of cell population
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Perspectives

e Comparing different Prior knowledge (in progress)

Study the impact of different discretization methods

Evaluate the difference between the found BNs

Apply the method on other developmental stages (different cell fate)
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