
HUMAN PRE-IMPLANTATION EMBRYONIC DEVELOPMENT
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● Embryo goes through different stages during 

the development
● Different cell types contribute to the 

development
● Two specifications lead to three distinct 

cell fates (EPI, PrE, TE)
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We have developed an innovative method that combines single-cell RNA sequencing (scRNAseq) data and prior biological knowledge to accurately infer Boolean 
networks (BNs) in the context of human embryonic development. By integrating gene expression data and addressing computational challenges associated with 
heterogeneous scRNAseq data, our method sheds light on the regulatory interactions that drive cellular decisions during embryonic development. In contrast to 
existing statistical tools like pseudo-time analysis [1] or modeling methods [2,3],  our approach allows for the distinction of different developmental stages by identifying 
stage-specific regulatory mechanisms, in the form Boolean network families, which consider heterogeneous and multiple cellular gene expression at each stage 
without the need for perturbations in the system.
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● Efficient algorithm to select cells and genes to generate pseudo-perturbations → 92 different pseudo-perturbations in 7h
● Robustness of the generated solutions → from +2 millions of solutions to only 2
● Discovery of 11 genes whose on/off values remain identical for 96 cells across 2 classes
● A new method that deals with single-cell data and its specificities (redundancy and sparsity)
● A method that learns Boolean networks of 2 stages using scRNAseq data and Prior Knowledge 

and identify mechanisms of TF-gene regulations distinguishing 2 developmental stages

● scRNAseq expression for 
~20,000 genes for ~1,700 
cells from 128 multi-stage 
embryos.

● Clustering cells according 
to their cellular types [4]

● scRNAseq data specificities: 
sparsity and redundancy
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1. PKN reconstruction
A Prior-Knowledge Network (PKN) is 
reconstructed using pyBRAvo [5] from a list of 
genes. This PKN is then reduced according to 
the scRNAseq data.

2. Experimental design construction
Given gene expression data of cells belonging to 
two classes, an ASP program calculates 
pseudo-perturbations for selected genes and 
cells. Pseudo-perturbations are used to 
maximize the readout differences; the output of 
this process is the optimal experimental 
design.

3. BNs inference
Caspo [6] is used to infer, given a PKN and an 
experimental design, specific BNs to each 
class.

OUR METHOD

APPLICATION ON THE TROPHECTODERM MATURATION
Objective: distinguish regulatory mechanisms between medium and late trophectoderm (TE).

● More readouts implicated in late TE stage
● Greater BNs variability for late TE → Gain of function
● Late TE seems more unstable → Transition from late TE to another stage

Inferred Boolean Networks (BNs)

MSE=0.1159
Size=6
#BNs=5

MSE=0.1410
Size=20
#BNs=17797

Reconstructed PKN

● Input: 438 transcription factors

● Output: PKN comprising
● 233 nodes: inputs (85), 

intermediates (36), readouts (19)
● 369 edges

Pseudo-perturbations search

k=10 →                              possible choices

Robustness of solutions

1 7 days of run on a computer cluster comprising 160 CPUs and 1.5 To of RAM

96 different 
pseudo-perturbations  
sub-optimal solution

Number of solution = 2
Different genes in solutions = 11
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